Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The PIN codes of the immune system can be hacked

02.11.2007
There are several reasons why the world is still plagued by diseases we cannot treat or vaccinate against, one of them being the vast complexity of the human immune system.

Danish researchers have now developed a method, which can help expose a complicated but crucial part of the immune system's defence mechanisms. This method can lead to entirely new vaccines and treatments.

Researchers from BioCentrum DTU and the Faculty of Health Sciences at the University of Copenhagen have combined the fields of Bioinformatics and ImmunoChemistry and created models of neural networks, which can do what has thus far been impossibe: Simulate how the immune system defends itself from disease. The neural network models also indicate that the immune system protects itself from being deceived by microorganisms, by using ingenious PIN code-like mechanisms. Every human being has its own unique immune system PIN code, so that even if e.g. a virus unlocks the code in one person, the knowledge gained by the virus is useless in infecting the next individual. But the same defence mechanism makes it difficult to decode the entire human immune system and develop precise immunological treatments such as vaccines.

With the new neural networks, however, Danish researchers will be able to predict all the different known, but also the as of yet unknown immune system PIN codes. This makes it the most comprehensive tool of its kind, putting the technology at the forefront of international research. News of the development has just been published in the scientific magazine PloS ONE.

... more about:
»PIN »immune »immune system »mechanism »neural

On a global scale, the neural networks can help researchers deal with all the variables of an epidemic threat. "We'll be able to find candidates for vaccines which can help both the individual and all of humanity," says Professor Søren Buus from the Department of International Health, Immunology and Microbiology, University of Copenhagen.

Contact Information:
Professor Søren Buus
Faculty of Health Sciences
University of Copenhagen
Tel: (+45) 3552 7885
Email: S.Buus@immi.ku.dk
Professor Morten Nielsen
Biocentrum DTU
Technical University of Denmark
Tel: (+45) 4525 2425
Email: mniel@cbs.dtu.dk
Our immune system protects us against threats from e.g. bacteria, viruses and cancer. So-called T-cells constantly inspect the body's cells and check if they are healthy, infected or broken. T-cells can distinguish between antigens belonging to the body and those that do not. If an antigen is alien - it could originate from a virus, which has infected the cell. The T-cells can attack the sick cell and thereby remove the location of the virus and terminate the infection.

The T-cells, however, cannot see directly into other cells. To do this job, they use "samplers", called tissue type molecules, which drag fragments of everything inside the cell being investigated to its surface, and show these samples to the T-cells. Researchers have known for a long time that this selection of samples plays a key part in the workings of the immune system; if a microorganism can evade the samplers, it evades the entire immune system.

The complexity of the immune system protects against disease
To prevent microorganisms from learning how the samplers work, the immune system has furnished itself with an amazing variety of samplers or tissue type molecules. Each of us only has a few variants (our own "pin code"), but the whole of humanity has thousands.

So a microorganism can never know which samplers it encounters; and even if it does figure this out in one human, the knowledge is useless in the next person infected. This defence strategy provides one of the most sturdy ways of protecting the immune system from being infiltrated - a little like PIN codes protecting our credit cards.

If we are to understand how the T-cells work, and use this knowledge of the immune system to discover, diagnose and treat diseases, the researchers must first identify precisely those cell fragments that the samplers choose to display, since it is only if the tissue type molecules show the right part of an infected cell to the T-cell, that the immune system reacts.

Why human tissue type is vital to immunology
Today, researchers know approx. 5000 different tissue type molecules in humans and the number is increasing day-by-day. Each of us expresses a unique combination of the molecules, and this explains why two individuals never react in the same way to the diseases they encounter during their lives.
The vast number of different tissue types ("pin codes") also affect transplants, so doctors must search for optimal tissue type compatibility during e.g. bone marrow transplants, a procedure vital in treating leukaemia. If the researchers know the tissue type molecules (the "pin code") of a patient, the neural networks can map all the cell fragments his/her immune system will be presented with, and therefore which pathogens the T-cells will get to see. If e.g. a patients own immune system does not react to a disease, the new knowledge can find, isolate and produce the necessary T-cells which can see the pathogen (virus, cancer cell etc.)

This can have far reaching consequences for the treatment of cancer, infectious diseases and transplants.

Sandra Szivos | EurekAlert!
Further information:
http://www.sund.ku.dk

Further reports about: PIN immune immune system mechanism neural

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>