Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sheep stress programs lamb

23.04.2002


Early life of fetus affects organs’ future health.

Sheep stressed in early pregnancy bear lambs with stunted kidneys that predispose them to high blood pressure Australian researchers have shown. The finding adds to growing evidence that early fetal life influences adult health.

Marelyn Wintour of the University of Melbourne subjected 4-week-pregnant ewes to two stressful days by infusing them with the hormone cortisol. Their lambs developed high blood pressure at 5 months of age, she told the Experimental Biology 2002 meeting in New Orleans on Sunday.



Just before birth, genes that regulate kidney development and blood pressure are more active than normal, she and her colleagues went on to find. As adults, the animals had only two-thirds of the normal number of fluid-filtering units in their kidneys.

Stress forces the cells destined to form the kidney to mature too fast, Wintour believes. This would give the organ less time to grow. "We accelerated maturation by overexpression of these genes," says Wintour. Over time, the inability of the kidney to expel water and salts efficiently may cause blood pressure to rise.

Wintour and others have explored the effects of maternal stress on the fetus before, but this is the first test of the effect of a natural hormone in a large animal. A 4-kilogram lamb weighs roughly the same as a human baby.

Premature physique

Fetal programming is the idea that early events in fetal growth affect an adult’s susceptibility to disease. It was discussed at two sessions of the New Orleans meeting.

Many large epidemiology studies have shown that poor nutrition, which limits fetal growth and reduces birth weight, is associated with increased risk of heart disease, hypertension and adult-onset diabetes.

"It takes it away from the idea that [these diseases] are retribution for adults," says epidemiologist David Barker of the University of Southampton, UK, who originally proposed the fetal-programming hypothesis.

Barker suggests that when conditions are tough - when food is scarce or levels of stress hormones are high, say - the fetus adapts to ensure its survival, perhaps by diverting blood or nutrients to the brain at the expense of other organs. These shifts cause permanent changes in the adult organs. "Everyone has been changed by their experience in fetal life," maintains Barker.

How fetal tissues are permanently altered remains largely unknown. Cells that give rise to an organ may be susceptible to external signals, suggests paediatric researcher Rebecca Simmons of the University of Pennsylvannia in Philadelphia. Anything that interrupts these signals could alter the cell types that survive to contribute to the organ.

This is consistent with Wintour’s finding that kidney development can be altered by stress that occurs even before it has formed. "It was surprising to me that the early time is the critical one," she says.

At the equivalent point in human pregnancy - at around 5-7 weeks - many women are unaware of their condition. Pregnant women who know they are stressed should try and take a little time out to relax or sleep, Wintour suggests.

HELEN PEARSON | © Nature News Service

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>