Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers shed light on black box of gestational diabetes

02.11.2007
A protein in the pancreas is giving researchers at the Stanford University School of Medicine their first chance at cracking the code that determines how diabetes develops during pregnancy, a finding that could lead to new treatments for all forms of diabetes.

The study may help explain why roughly 5 percent of women develop diabetes temporarily while pregnant, a condition called gestational diabetes. That condition is a leading cause of birth defects and can predispose the child to develop diabetes later in life.

"The basis of gestational diabetes has been a black box," said Seung Kim, MD, PhD, associate professor of developmental biology and senior author on the study. The results will be published in the Nov. 2 issue of the journal Science.

The protein Kim and his colleagues studied, called menin, was already known to have a role in preventing cancer in the pancreas and other organs. When menin is present it blocks the growth of pancreatic cells and, in that way, prevents cancer.

However, cells of the hormone-producing part of the pancreas, called the islets, need to grow in pregnant women or when people gain weight as a way of providing enough insulin for the burgeoning supply of cells. The increase in pancreas islet cells provides the additional insulin needed for the cells of the body to take up sugar from the blood. After a pregnant woman delivers her child, the pancreatic islets return to their original size.

According to Kim's work in mice, the pancreas accomplishes that adaptive growth by producing less menin during pregnancy. With less of the brake present, the pancreatic islet cells can divide, and this growth provides the additional insulin. Within a week after delivery the menin levels in the mice were back up to normal and the pancreatic islets began shrinking to their original size.

When Kim and postdoctoral scholar Satyajit Karnik, PhD, first author of the study, created mice that produce too much menin, the islets couldn't grow sufficiently during pregnancy and the mice ended up with gestational diabetes.

"This suggests that there is an internal code for controlling pancreatic islet growth, a code we intend to crack," Kim said. That code appears to be regulated partly by the level of menin.

Kim's group also showed that a natural way of regulating the amount of menin present in the pancreas is through a hormone called prolactin, which is abundant in pregnant women. Other researchers had previously shown that prolactin during pregnancy stimulates the islet cells to start dividing, but how it accomplished this stimulation was unclear.

Kim and Karnik suspected menin might be the link other researchers had been looking for. To test that idea, they gave prolactin to nonpregnant mice. As predicted, menin levels dropped and the pancreas increased in size, mimicking what is seen during pregnancy.

Kim said that although most of this research relates to menin regulation during pregnancy, similar forces may be at work in obese adults with diabetes. He and Karnik found that obese mice have less menin in the pancreas than mice at a normal weight. That finding suggests that menin may have a central role in obesity-related diabetes as well.

Kim said prolactin may be just one way of regulating menin levels and as a result regulating pancreatic growth. Other hormones may be involved in increasing or decreasing menin in nonpregnant adults.

Understanding the mechanisms of regulating menin should lead to new ways of growing islets for transplantation into people with type-1 diabetes and could lead to new treatments for diabetes in pregnant women or obese adults, Kim said.

Gestational diabetes, which is on the rise nationwide, is becoming more recognized as a significant risk to mothers and their babies. Sen. Hillary Rodham Clinton, D-NY, recently cosponsored a bill aimed at devoting more funding to understanding, preventing and treating the disease.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

Further reports about: Researchers gestational islet menin pancreas pancreatic pregnant prolactin

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>