Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes identified to protect brassicas from damaging disease

02.11.2007
Scientists have identified a new way to breed brassicas, which include broccoli, cabbage and oilseed rape, resistant to a damaging virus. Their discovery has characterised a form of resistance that appears to be durable, broad-spectrum and unlikely to be overcome by the virus over time.

Turnip mosaic virus (TuMV) is an economically devastating virus that infects a wide range of cultivated plants, but especially brassicas. In research published recently in the Journal of General Virology, scientists at Warwick HRI and collaborators have identified genes that confer resistance to the virus and, crucially, as multiple genes are involved, provide resistance that the virus appears not to have been able to evolve to overcome.

The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and others, could have important broader implications for plant breeders and farmers as TuMV is a member of the Potyvirus family - the biggest family of viruses that attack plants - and an important model for understanding other viruses.

The Warwick HRI scientists have examined a number of types of genes that determine plant responses to virus attack. One response is for the plant to kill off individual cells if they become infected, thereby restricting the viral infection to a very localised area of the plant. Another response is to restrict virus movement within the plant and stop its spread from leaf to leaf. The researchers have identified a number of genes that appear to not allow any replication of the virus in plants when it is introduced into the plant.

... more about:
»HRI »Warwick »brassica »genes »identified »resistance

Dr John Walsh, the research group leader, said: "Turnip mosaic virus can cause big economic losses for farmers. We have identified multiple genes that give some varieties of brassica resistance to the virus. By breeding these genes into commercial varieties of the crop, using conventional techniques, breeders can protect them from attack. But most importantly, we have identified broad-spectrum resistance provided by a number of genes. This means we potentially have the means to develop brassicas, such as broccoli, that will be robust enough to prevent the virus mutating to overcome the resistance."

Professor Simon Bright, Director of Warwick HRI, commented: "This research demonstrates the importance of centres such as Warwick HRI in linking fundamental bioscience to developments that benefit growers and consumers. In the three years since we transferred to become part of the University of Warwick, Warwick HRI has built on its core strengths in horticulture and is now at the forefront of efforts, such as the BBSRC Crop Science Initiative, to turn excellent plant science in to real benefits for crop production."

Dr Walsh's team has recently been awarded more funding by BBSRC under its Crop Science Initiative to take this research further.

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: HRI Warwick brassica genes identified resistance

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>