Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes identified to protect brassicas from damaging disease

02.11.2007
Scientists have identified a new way to breed brassicas, which include broccoli, cabbage and oilseed rape, resistant to a damaging virus. Their discovery has characterised a form of resistance that appears to be durable, broad-spectrum and unlikely to be overcome by the virus over time.

Turnip mosaic virus (TuMV) is an economically devastating virus that infects a wide range of cultivated plants, but especially brassicas. In research published recently in the Journal of General Virology, scientists at Warwick HRI and collaborators have identified genes that confer resistance to the virus and, crucially, as multiple genes are involved, provide resistance that the virus appears not to have been able to evolve to overcome.

The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and others, could have important broader implications for plant breeders and farmers as TuMV is a member of the Potyvirus family - the biggest family of viruses that attack plants - and an important model for understanding other viruses.

The Warwick HRI scientists have examined a number of types of genes that determine plant responses to virus attack. One response is for the plant to kill off individual cells if they become infected, thereby restricting the viral infection to a very localised area of the plant. Another response is to restrict virus movement within the plant and stop its spread from leaf to leaf. The researchers have identified a number of genes that appear to not allow any replication of the virus in plants when it is introduced into the plant.

... more about:
»HRI »Warwick »brassica »genes »identified »resistance

Dr John Walsh, the research group leader, said: "Turnip mosaic virus can cause big economic losses for farmers. We have identified multiple genes that give some varieties of brassica resistance to the virus. By breeding these genes into commercial varieties of the crop, using conventional techniques, breeders can protect them from attack. But most importantly, we have identified broad-spectrum resistance provided by a number of genes. This means we potentially have the means to develop brassicas, such as broccoli, that will be robust enough to prevent the virus mutating to overcome the resistance."

Professor Simon Bright, Director of Warwick HRI, commented: "This research demonstrates the importance of centres such as Warwick HRI in linking fundamental bioscience to developments that benefit growers and consumers. In the three years since we transferred to become part of the University of Warwick, Warwick HRI has built on its core strengths in horticulture and is now at the forefront of efforts, such as the BBSRC Crop Science Initiative, to turn excellent plant science in to real benefits for crop production."

Dr Walsh's team has recently been awarded more funding by BBSRC under its Crop Science Initiative to take this research further.

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: HRI Warwick brassica genes identified resistance

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>