Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Designer Toxins Kill Bt-Resistant Insect Pests

02.11.2007
A new way to combat resistant pests stems from discovering how the widely used natural insecticide Bt kills insects.

Figuring out how Bt toxins punch holes in the cells of an insect's gut was the key to designing the new toxins, according to a Mexico-U.S. research team.

Some insects have developed resistance to Bt toxins, naturally occurring insecticides used worldwide to combat pests of crops such as cotton and corn and also disease-carrying mosquitoes. "This is the first time that knowledge of how Bt toxins work and how insects become resistant have been used to design toxins that kill resistant insects," said research team member Bruce Tabashnik of The University of Arizona in Tucson.

The discovery is important for cotton-growing areas such as northern Mexico, Texas and Arizona. More than 90 percent of Arizona's approximately 200,000 acres of cotton are planted in the biotech cotton known as Bt cotton. "Our goal is to control insects in environmentally friendly ways so we can limit the damage that insects do to crops and the harm they do to people by transmitting disease," said Tabashnik, head of the UA's entomology department and a member of the UA's BIO5 Institute.

... more about:
»Bravo »Sober »Tabashnik »UA' »cadherin »insect »insecticide »unam

"Bt toxins are great for that because they only kill certain insects and don't harm other living things. These new designer toxins give us another environmentally friendly way to control insects."

The Mexico team developed the designer toxins by tweaking the gene that codes for the toxin, a protein. The researchers then teamed up with Tabashnik to test their modified toxins on UA's colony of Bt-resistant pink bollworms, major cotton pests.

Team member Alejandra Bravo, a research scientist at Universidad Nacional Auton?ma de México (UNAM) said, "We proposed that changing a small part of the toxin would kill the insect -- and we did it."

The team's research article, "Engineering Modified Bt Toxins to Counter Insect Resistance," is scheduled for publication in Science Express, the online version of the journal Science, on Thursday, Nov. 1. A complete list of authors and funding agencies is at the bottom of this release.

The collaboration between the UNAM team of molecular biologists and the American expert in the evolution of pest resistance happened by accident.

Mario Sober?n and Alejandra Bravo, a husband-wife research team, had invited Tabashnik to give a talk in Cuernavaca, Mexico, at a scientific conference on pore-forming bacterial toxins such as Bt solution.

Tabashnik said, "While I was there, I got turista -- which is caused by pore-forming bacterial toxins. I was pretty sick."

The couple cared for Tabashnik while he recovered. He asked what he could do to repay their kindness, and Sober?n suggested collaborating to test their designer toxins on UA's resistant insects.

"It was the perfect match," Tabashnik said. "We knew what made our strains resistant, and they hypothesized that their designer toxins could overcome the resistance."

The discovery is based on understanding a receptor molecule called cadherin on the insects' gut membranes. Normal cadherin binds with the Bt toxin in a lock-and-key fashion.

After the toxin binds, an enzyme hacks a bit off each toxin molecule.

The trimmed toxin molecules clump and form pores in the gut membrane cells. The pores let materials flow chaotically in and out of the cells. As a result cells and ultimately the insect die.

Tabashnik and his UA colleagues Tim Dennehy and Yves Carrière knew the Bt-resistant pink bollworms in their colony had a mutant version of cadherin.

Tabashnik said, "These resistant insects have genetic changes, mutations, that change the lock. Their cadherin no longer takes the key."

The UNAM team did an end-run around the resistant insects' strategy. The modified, or designer, toxins have that crucial bit already gone, so they clump and form the death-dealing pores. No cadherin needed.

Bravo said, "When Bruce told us it killed the insects, we were very happy. We know if it kills resistant insects, it will be very important."

The researchers have applied for a multinational patent for the designer toxins.
UNAM is the lead organization in the patent.
Combating Bt-resistant pests without using broad-spectrum insecticides can make agriculture safer for farm workers, better for the environment and more profitable for growers, Tabashnik said.

He said, "The university research that helped produce this new invention is an investment that can bring returns to the state of Arizona.”

With the exception of Tabashnik, all the authors on the research paper are UNAM's Instituto de Biotecnolog?a in Cuernavaca, Morelos. Tabashnik's co-authors are Mario Sober?n, Liliana Pardo-L?pez, Idalia L?pez, Isabel G?mez and Alejandra Bravo.

The Mexican National Council of Science & Technology (Consejo Nacional de Cienca y Tecnolog?a, or CONACyT), the U.S. National Institutes of Health, and the U.S.

Department of Agriculture funded the research.

Researcher contact information:
Bruce Tabashnik, 520-621-1141
brucet@ag.arizona.edu
Mario Sober?n, 52-777-3291618
mario@ibt.unam.mx
Alejandra Bravo, 52-777-3291635
bravo@ibt.unam.mx
Related Web sites:
Bruce Tabashnik
http://ag.arizona.edu/ento/faculty/tabashnik.htm
Mario Sober?n
http://www.ibt.unam.mx/server/PRG.base?tipo:doc,dir:PRG.curriculum,par:mario
Alejandra Bravo
http://www.ibt.unam.mx/server/PRG.base?tipo:doc,dir:PRG.grupo,par:Gab,tit:_Grupo_de_la__Dra._Maria_Alejandra_Bravo

Mari Jensen | The University of Arizona
Further information:
http://www.bio5.org
http://uanews.org

Further reports about: Bravo Sober Tabashnik UA' cadherin insect insecticide unam

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>