Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT IDs enzymes key to brainpower

01.11.2007
Research could inform treatments for Alzheimer's patients

Bolstering disintegrating neural connections may help boost brainpower in Alzheimer's disease patients, MIT researchers and colleagues will report in the Nov. 8 issue of Neuron.

The researchers zeroed in on the enzymes that manipulate a key scaffolding protein for synapses, the connections through which brain cells communicate. Synapses are weakened and lost in neurodegenerative diseases such as Alzheimer's and Parkinson's disease.

"We identified a major underlying mechanism through which synapses are strengthened and maintained," said Morgan H. Sheng, Menicon Professor of Neuroscience at MIT's Picower Institute for Learning and Memory. "The enzymes involved could be good targets for potential drug treatments."

... more about:
»Key »PSD-95 »Sheng »Synapse »enzymes

A protein called postsynaptic density-95 (PSD-95) is a key building block of synapses. Like the steel girders in a building, it acts as a scaffold around which other components are assembled. "The more PSD-95 molecules, the bigger and stronger the synapse," said co-author Myung Jong Kim, a Picower research scientist.

Previous research had shown that mice genetically altered to have less PSD-95 experienced learning and memory problems.

In the current study, the researchers identified for the first time the enzymes that work behind the scenes on PSD-95, adding a phosphate group to a specific amino acid in the PSD-95 protein. This process--called phosphorylation--is critical for PSD-95 to do its job in supporting synapses.

"Adding a phosphate group to a single amino acid allows PSD-95 to promote synapse size and strength," said Sheng, who also holds an appointment in MIT's Department of Brain and Cognitive Sciences and is a Howard Hughes Medical Institute investigator. "Therefore, promoting this process could help improve cognitive function."

Sheng believes manipulating PSD-95 through phosphorylation could lead to bigger and more robust synapses, which would boost brainpower in both normal and diseased brains. "It's possible that promoting PSD-95 phosphorylation could also help neuropsychiatric illnesses in which synapse function goes awry, such as schizophrenia, depression and autism," Sheng said.

In addition to Sheng and Kim, authors include Picower research scientist Kensuke Futai; Yasunori Hayashi, MIT assistant professor of neurobiology and RIKEN-MIT investigator; and Jihoon Yu and Kwangwook Cho of the University of Bristol in England.

This research is suported by the National Institutes of Health.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Key PSD-95 Sheng Synapse enzymes

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>