Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT IDs enzymes key to brainpower

Research could inform treatments for Alzheimer's patients

Bolstering disintegrating neural connections may help boost brainpower in Alzheimer's disease patients, MIT researchers and colleagues will report in the Nov. 8 issue of Neuron.

The researchers zeroed in on the enzymes that manipulate a key scaffolding protein for synapses, the connections through which brain cells communicate. Synapses are weakened and lost in neurodegenerative diseases such as Alzheimer's and Parkinson's disease.

"We identified a major underlying mechanism through which synapses are strengthened and maintained," said Morgan H. Sheng, Menicon Professor of Neuroscience at MIT's Picower Institute for Learning and Memory. "The enzymes involved could be good targets for potential drug treatments."

... more about:
»Key »PSD-95 »Sheng »Synapse »enzymes

A protein called postsynaptic density-95 (PSD-95) is a key building block of synapses. Like the steel girders in a building, it acts as a scaffold around which other components are assembled. "The more PSD-95 molecules, the bigger and stronger the synapse," said co-author Myung Jong Kim, a Picower research scientist.

Previous research had shown that mice genetically altered to have less PSD-95 experienced learning and memory problems.

In the current study, the researchers identified for the first time the enzymes that work behind the scenes on PSD-95, adding a phosphate group to a specific amino acid in the PSD-95 protein. This process--called phosphorylation--is critical for PSD-95 to do its job in supporting synapses.

"Adding a phosphate group to a single amino acid allows PSD-95 to promote synapse size and strength," said Sheng, who also holds an appointment in MIT's Department of Brain and Cognitive Sciences and is a Howard Hughes Medical Institute investigator. "Therefore, promoting this process could help improve cognitive function."

Sheng believes manipulating PSD-95 through phosphorylation could lead to bigger and more robust synapses, which would boost brainpower in both normal and diseased brains. "It's possible that promoting PSD-95 phosphorylation could also help neuropsychiatric illnesses in which synapse function goes awry, such as schizophrenia, depression and autism," Sheng said.

In addition to Sheng and Kim, authors include Picower research scientist Kensuke Futai; Yasunori Hayashi, MIT assistant professor of neurobiology and RIKEN-MIT investigator; and Jihoon Yu and Kwangwook Cho of the University of Bristol in England.

This research is suported by the National Institutes of Health.

Elizabeth A. Thomson | MIT News Office
Further information:

Further reports about: Key PSD-95 Sheng Synapse enzymes

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>