Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells reprogram in 24 hours

19.04.2002


Erasing molecular memory of parents could shed light on clones.

Cells naturally wipe out the mark of their parents in 24 hours, say cloning experts. Exactly how may begin to explain the way that animal clones and stem cells are reprogrammed. Not all genes are born equal. In mammals, some genes are imprinted - cells switch on only the copy inherited from mum or dad, not both. This sex stamp must be erased and rewritten in sperm and egg cells, however, so they are correctly labelled as male or female when they fuse to form the next generation.

The deletion occurs in as little as a day, Fumitoshi Ishino of the Tokyo Institute of Technology in Yokohama, Japan, and his team have now shown. Even as an embryo is growing, the cells destined to form its ovaries and testes are scrubbing out established patterns of gene activity1.



The finding begins to unravel how cells overwrite their history, explains Azim Surani of the Wellcome/CRC Institute in Cambridge, UK. This is something researchers working on cloning and stem cells long to find out. "Any information we get is bound to be helpful," says Surani.

Programming skills

Hours after fertilisation sperm and egg overwrite their DNA with instructions for making an embryo - imprints remain intact. Cloned mammals are thought to die early or suffer ill health partly because this reprogramming is incomplete; in clones made from some cell types, imprinting is upset as a result.

Some of the cell machinery that erases imprints may also do reprogramming, says Wolf Reik, who studies these phenomena at the Babraham Institute in Cambridge, UK. "I’m sure there are going to be parallels."

Once found, the molecules involved might be harnessed to improve the efficiency of cloning. Similarly, adult stem cells might be better persuaded to rewrite their normal instructions and generate unusual cell types.

But cloning researcher Rudolf Jaenisch of the Whitehead Institute in Cambridge, Massachusetts, is not convinced that the two processes - removing imprinting and reprogramming - are comparable. He says that cloning shortcuts the natural process.

Wipe out

Ishino’s team believe that, under the right conditions, the imprint on a donor cell’s DNA is carried unaffected into the clone. They used this to test when nuclear imprinting is erased in a growing embryo.

The group made clones from the cells in mice embryos that give rise to ovary and testes. They took the cells at different stages of embryo development. Cells taken after imprinting had been erased gave rise to clones that died very young, they found. Clones from cells that still had some imprinting lasted longer.

Midway through an embryo’s growth, genes lose their sex bias and switch into a default state in a day, the researchers conclude. Chemical gags are removed from genes one by one, to make the activity of both copies equal. The speed suggests that the imprinting pattern is actively wiped out, says Reik, rather than being lost passively over many cell divisions.

The experiments also add to growing evidence that embryos cannot survive without correct imprinting. "Clones that have no parental information do not develop to term," says Ishino. Similarly, embryos carrying two copies of either the mother or father’s genes cannot survive.

References
  1. Lee, J. Erasing genomic impinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development, 129, 1807 - 1817, (2002).


HELEN PEARSON | © Nature News Service

More articles from Life Sciences:

nachricht Biomarkers for identifying Tumor Aggressiveness
26.07.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>