Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rushing fireball developed its own form of sugar digestion

19.04.2002


Microbiologists from Wageningen have discovered a strange form of digestion in an exotic microorganism. The `Rushing fireball´, Latin name Pyrococcus furiosus, has reinvented the wheel for several steps of sugar digestion.



Pyrococcus furiosus, which was discovered 15 years ago on an Italian volcanic island, digests sugar somewhat differently from humans, animals, plants and bacteria. All organisms, convert glucose into pyruvate by means of a glycolysis. Pyrococcus furiosus makes use of other, non-related enzymes.

Genealogical research has revealed that the enzymes in the ‘Rushing fireball’ have evolved independently from other microorganisms. In other words, Pyrococcus furiosus independently invented the wheel of sugar digestion. Meanwhile, with the help of gene technology, the Wageningen scientists are trying to make several of the sugar digestion enzymes suitable for industrial applications. Now that the route of the sugar digestion is known, the researchers are trying to find the regulation of this route. A first step has been taken. The researchers found the same piece of DNA prior to 21 genes connected to sugar digestion. The piece is present in the so-called promoter sequence. The 21 genes are involved in the digestion of alpha sugars such as maltose and starch. The piece probably plays an important role in the regulation of these genes. Since its discovery, Pyrococcus furiosus has attracted a lot of interest. The organism, discovered close to the beach on the Italian island of Vulcano, survives best in a salty environment at a temperature of 100oC. Pyrococcus is industrially interesting because its enzymes are not destroyed at higher temperatures. Scientists are studying the organism’s extraordinary living conditions and its variety of nutritional habits.

Michel Philippens | alphagalileo

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>