Intravenous gene therapy protects normal tissue of mice during whole-body radiation

“Ionizing radiation can be extremely damaging to cells, tissues, organs and organ systems,” said Joel S. Greenberger, M.D., professor and chairman, department of radiation oncology, University of Pittsburgh School of Medicine. “In previous studies, we demonstrated that gene therapy can be both swallowed in liquid form and inhaled through a nebulizer prior to radiation exposure to protect healthy tissues from damage.

In this study, we found that the same therapy administered intravenously also offers protection during exposure to whole-body irradiation.” Dr. Greenberger added that intravenous administration could potentially offer wide-reaching protection to the public in the event of a terrorist attack since experts believe a significant number of the population would die within 30 days of receiving a large dose of radiation to the entire body.

In the study, mice were used to test the protective effects of manganese superoxide dismutase plasmid liposome (MnSOD-PL) gene therapy on the bone marrow during whole-body irradiation. The researchers found that in a control group of mice that received an initial 9.5 Gy dose of radiation, 58 percent survived at 30 days compared to 90 percent after the same length of time for an experimental group of mice that were injected with MnSOD-PL prior to irradiation. Between 30 and 330 days, there were no differences in survival rates between experiment and control group mice, indicating that systemic MnSOD-PL treatment was not harmful to survival.

“Intravenous administration of gene therapy appears to prevent the damaging effects of radiation, suggesting it is a viable delivery method,” said Dr. Greenberger. “Future clinical studies will tell us whether this therapy can protect people from the deadly effects of radiation.”

Media Contact

Clare Collins EurekAlert!

More Information:

http://www.upmc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors