Intravenous gene therapy protects normal tissue of mice during whole-body radiation

“Ionizing radiation can be extremely damaging to cells, tissues, organs and organ systems,” said Joel S. Greenberger, M.D., professor and chairman, department of radiation oncology, University of Pittsburgh School of Medicine. “In previous studies, we demonstrated that gene therapy can be both swallowed in liquid form and inhaled through a nebulizer prior to radiation exposure to protect healthy tissues from damage.

In this study, we found that the same therapy administered intravenously also offers protection during exposure to whole-body irradiation.” Dr. Greenberger added that intravenous administration could potentially offer wide-reaching protection to the public in the event of a terrorist attack since experts believe a significant number of the population would die within 30 days of receiving a large dose of radiation to the entire body.

In the study, mice were used to test the protective effects of manganese superoxide dismutase plasmid liposome (MnSOD-PL) gene therapy on the bone marrow during whole-body irradiation. The researchers found that in a control group of mice that received an initial 9.5 Gy dose of radiation, 58 percent survived at 30 days compared to 90 percent after the same length of time for an experimental group of mice that were injected with MnSOD-PL prior to irradiation. Between 30 and 330 days, there were no differences in survival rates between experiment and control group mice, indicating that systemic MnSOD-PL treatment was not harmful to survival.

“Intravenous administration of gene therapy appears to prevent the damaging effects of radiation, suggesting it is a viable delivery method,” said Dr. Greenberger. “Future clinical studies will tell us whether this therapy can protect people from the deadly effects of radiation.”

Media Contact

Clare Collins EurekAlert!

More Information:

http://www.upmc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors