Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intravenous gene therapy protects normal tissue of mice during whole-body radiation

Gene therapy administered intravenously could be an effective agent to protect vital organs and tissues from the effects of ionizing radiation in the event of large-scale exposure from a radiological or nuclear bomb, according to an animal study presented today by University of Pittsburgh researchers at the 49th annual meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Los Angeles.

“Ionizing radiation can be extremely damaging to cells, tissues, organs and organ systems,” said Joel S. Greenberger, M.D., professor and chairman, department of radiation oncology, University of Pittsburgh School of Medicine. “In previous studies, we demonstrated that gene therapy can be both swallowed in liquid form and inhaled through a nebulizer prior to radiation exposure to protect healthy tissues from damage.

In this study, we found that the same therapy administered intravenously also offers protection during exposure to whole-body irradiation.” Dr. Greenberger added that intravenous administration could potentially offer wide-reaching protection to the public in the event of a terrorist attack since experts believe a significant number of the population would die within 30 days of receiving a large dose of radiation to the entire body.

In the study, mice were used to test the protective effects of manganese superoxide dismutase plasmid liposome (MnSOD-PL) gene therapy on the bone marrow during whole-body irradiation. The researchers found that in a control group of mice that received an initial 9.5 Gy dose of radiation, 58 percent survived at 30 days compared to 90 percent after the same length of time for an experimental group of mice that were injected with MnSOD-PL prior to irradiation. Between 30 and 330 days, there were no differences in survival rates between experiment and control group mice, indicating that systemic MnSOD-PL treatment was not harmful to survival.

... more about:
»Organ »Radiation »Tissue »therapy »whole-body

“Intravenous administration of gene therapy appears to prevent the damaging effects of radiation, suggesting it is a viable delivery method,” said Dr. Greenberger. “Future clinical studies will tell us whether this therapy can protect people from the deadly effects of radiation.”

Clare Collins | EurekAlert!
Further information:

Further reports about: Organ Radiation Tissue therapy whole-body

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>