Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Does the Antitumor Drug Get to the Cell Nucleus?

30.10.2007
Copper transporter plays an unexpected role in the absorption of cisplatin

Platinum complexes such as the well-known cisplatin are powerful antitumor medications.

They cross the cell membrane and reach the nucleus, where they attach to DNA and stop cell growth. But how does cisplatin get to the nucleus? Italian researchers have now proven that a copper transport protein may play a critical role. In the journal Angewandte Chemie, they present their hypothesis about the transport mechanism.

It has always been assumed that cisplatin simply passes through the cell membrane; however, growing evidence indicates that a copper transporter is involved. Ctr1 is a membrane-dwelling protein that brings copper into cells. It consists of three helical segments that sit in the membrane, one end protruding into the cell, the other on the outside. Three such molecules lodge together to form a channel-like structure. The end that sticks out of the cell and the interior of the “channel” contain many sulfur-containing methionine groups, which are important for binding copper.

... more about:
»Cisplatin »Platinum »Protein »Transporter »copper

A team led by Giovanni Natile at the University of Bari (Italy) has now proven that this structural element also plays a role in binding platinum. The researchers produced a synthetic peptide with a structure very similar to the extracellular end of the copper transport protein. Cisplatin is a complex with a central platinum ion and four ligands: two neighboring amino groups and two neighboring chloride ions. The peptide displaces all four of these ligands and binds to the platinum ion itself.

As is the case for copper, the transport protein seems to bind the platinum atom from cisplatin by replacing all other ligands bound to the metal ion. The next step could be the traversal of a ligand-free “naked” platinum atom through the channel and into the cytosol of the cell. However, this contradicts other experiments that have demonstrated that treated tumor cells do not contain bare platinum, but rather undegraded cisplatin—accumulated in certain organelles.

Natile and his co-workers have proposed an interesting hypothesis to explain these observations: After an initial interaction between a few cisplatin molecules and the methionine-rich extracellular end of the copper transporter, the platinum ion does not pass through the channel, but instead stabilizes the trimeric channel structure. This sets in motion a mechanism called endocytosis, in which the cell membrane encircles the transporter and forms a little interior bubble filled with the outer medium. This medium contains some intact cisplatin. The bubble then migrates to the interior of the cell and comes into contact with the organelles, including the nucleus.

Author: Giovanni Natile, Università degli Studi di Bari (Italy), mailto:natile@farmchim.uniba.it

Title: Interaction between Platinum Complexes and a Methionine Motif Found in Copper Transport Proteins

Angewandte Chemie International Edition, doi: 10.1002/anie.200703271

| Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Cisplatin Platinum Protein Transporter copper

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>