Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HU scientist finds way to catch terrorists red-handed

30.10.2007
A scientist at the Hebrew University of Jerusalem has discovered a way to literally catch terrorists red-handed.

A new chemical spray detector developed by Prof. Joseph Almog of the Hebrew University's Casali Institute of Applied Chemistry detects the home-made explosive urea nitrate. When sprayed on cotton swabs taken from the hands of a suspect, if they have had recent contact with urea nitrate, the chemical will turn a blood red hue.

Urea nitrate is a powerful improvised explosive, frequently used by Palestinian terrorists in Israel. It was also used in the first World Trade Center bombing in New York in 1993. Non-professionals can prepare large amounts of this material in "back-yard" facilities, which have subsequently been used in improvised mines and in suicide bomber belts, the devastating results of which have killed over a hundred people in Israel alone.

Urea nitrate is a colorless crystalline substance that looks very much like sugar, which makes it very difficult to detect. The development of a color test will therefore be a significant aid to forensic scientists. The test is based on the formation of a red dye in the chemical reaction between p-dimethylaminocinnamaldehyde and urea nitrate under neutral conditions.

... more about:
»Almog »Chemical »Scientist »nitrate »urea

The initial findings of the project, which was supported in part by the US/Israel Bilateral Committee on Counter-Terrorism, were published two years ago, in the Journal of Forensic Sciences. The second part of the work, carried out by research student Nitay Lemberger, involved unequivocal structure elucidation of the red dye.

Although instruments do already exist to detect urea nitrate, they are much more sophisticated and quite expensive. According to Prof. Almog, his spray can detect minute traces of the improvised explosive on hands of suspects, door handles, luggage containers and vehicles, and it can distinguish between sugar or any innocent looking powder and urea nitrate.

Prof. Almog, who says the spray detector is easy to use and inexpensive, sees it being adopted as a standard arsenal of law enforcement agencies, security services, and the military and at certain check-points at air and sea ports. He said that as well as enabling better understanding of the chemistry of urea nitrate, this discovery may also play an important role in legal procedures.

With a long history of inventing color changing test fluids for law enforcement, Prof. Almog is a former Israeli Police Brigadier General and Director of the Identification and Forensic Science Division of the Israeli Police. His team has led a great deal of groundbreaking research in past years, including the development of the chemical FerroTrace which turns purple when the user has recently held a weapon. Prof. Almog is the recipient of the Lucas Medal, the highest award of The American Academy of Forensic Sciences for 2005, "for outstanding achievements in forensic science".

For further information, contact:

Rebecca Zeffert, Dept. of Media Relations, the Hebrew University, tel: 02-588-1641, cell: 054-882-0661

or Orit Sulitzeanu, Hebrew University spokesperson, tel: 02-5882910, cell: 054-882 0016.

Rebecca Zeffert
Foreign Press Liaison
Dept. of Media Relations
Hebrew University of Jerusalem
Tel: +972 (0)2-588 1641
Cell: +972 (0)54 882 0661
Skype: rebeccazeffert
E-mail: rebeccaz@savion.huji.ac.il

Rebecca Zeffert | Hebrew University
Further information:
http://media.huji.ac.il
http://www.huji.ac.il

Further reports about: Almog Chemical Scientist nitrate urea

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>