Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HU scientist finds way to catch terrorists red-handed

30.10.2007
A scientist at the Hebrew University of Jerusalem has discovered a way to literally catch terrorists red-handed.

A new chemical spray detector developed by Prof. Joseph Almog of the Hebrew University's Casali Institute of Applied Chemistry detects the home-made explosive urea nitrate. When sprayed on cotton swabs taken from the hands of a suspect, if they have had recent contact with urea nitrate, the chemical will turn a blood red hue.

Urea nitrate is a powerful improvised explosive, frequently used by Palestinian terrorists in Israel. It was also used in the first World Trade Center bombing in New York in 1993. Non-professionals can prepare large amounts of this material in "back-yard" facilities, which have subsequently been used in improvised mines and in suicide bomber belts, the devastating results of which have killed over a hundred people in Israel alone.

Urea nitrate is a colorless crystalline substance that looks very much like sugar, which makes it very difficult to detect. The development of a color test will therefore be a significant aid to forensic scientists. The test is based on the formation of a red dye in the chemical reaction between p-dimethylaminocinnamaldehyde and urea nitrate under neutral conditions.

... more about:
»Almog »Chemical »Scientist »nitrate »urea

The initial findings of the project, which was supported in part by the US/Israel Bilateral Committee on Counter-Terrorism, were published two years ago, in the Journal of Forensic Sciences. The second part of the work, carried out by research student Nitay Lemberger, involved unequivocal structure elucidation of the red dye.

Although instruments do already exist to detect urea nitrate, they are much more sophisticated and quite expensive. According to Prof. Almog, his spray can detect minute traces of the improvised explosive on hands of suspects, door handles, luggage containers and vehicles, and it can distinguish between sugar or any innocent looking powder and urea nitrate.

Prof. Almog, who says the spray detector is easy to use and inexpensive, sees it being adopted as a standard arsenal of law enforcement agencies, security services, and the military and at certain check-points at air and sea ports. He said that as well as enabling better understanding of the chemistry of urea nitrate, this discovery may also play an important role in legal procedures.

With a long history of inventing color changing test fluids for law enforcement, Prof. Almog is a former Israeli Police Brigadier General and Director of the Identification and Forensic Science Division of the Israeli Police. His team has led a great deal of groundbreaking research in past years, including the development of the chemical FerroTrace which turns purple when the user has recently held a weapon. Prof. Almog is the recipient of the Lucas Medal, the highest award of The American Academy of Forensic Sciences for 2005, "for outstanding achievements in forensic science".

For further information, contact:

Rebecca Zeffert, Dept. of Media Relations, the Hebrew University, tel: 02-588-1641, cell: 054-882-0661

or Orit Sulitzeanu, Hebrew University spokesperson, tel: 02-5882910, cell: 054-882 0016.

Rebecca Zeffert
Foreign Press Liaison
Dept. of Media Relations
Hebrew University of Jerusalem
Tel: +972 (0)2-588 1641
Cell: +972 (0)54 882 0661
Skype: rebeccazeffert
E-mail: rebeccaz@savion.huji.ac.il

Rebecca Zeffert | Hebrew University
Further information:
http://media.huji.ac.il
http://www.huji.ac.il

Further reports about: Almog Chemical Scientist nitrate urea

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>