Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HU scientist finds way to catch terrorists red-handed

30.10.2007
A scientist at the Hebrew University of Jerusalem has discovered a way to literally catch terrorists red-handed.

A new chemical spray detector developed by Prof. Joseph Almog of the Hebrew University's Casali Institute of Applied Chemistry detects the home-made explosive urea nitrate. When sprayed on cotton swabs taken from the hands of a suspect, if they have had recent contact with urea nitrate, the chemical will turn a blood red hue.

Urea nitrate is a powerful improvised explosive, frequently used by Palestinian terrorists in Israel. It was also used in the first World Trade Center bombing in New York in 1993. Non-professionals can prepare large amounts of this material in "back-yard" facilities, which have subsequently been used in improvised mines and in suicide bomber belts, the devastating results of which have killed over a hundred people in Israel alone.

Urea nitrate is a colorless crystalline substance that looks very much like sugar, which makes it very difficult to detect. The development of a color test will therefore be a significant aid to forensic scientists. The test is based on the formation of a red dye in the chemical reaction between p-dimethylaminocinnamaldehyde and urea nitrate under neutral conditions.

... more about:
»Almog »Chemical »Scientist »nitrate »urea

The initial findings of the project, which was supported in part by the US/Israel Bilateral Committee on Counter-Terrorism, were published two years ago, in the Journal of Forensic Sciences. The second part of the work, carried out by research student Nitay Lemberger, involved unequivocal structure elucidation of the red dye.

Although instruments do already exist to detect urea nitrate, they are much more sophisticated and quite expensive. According to Prof. Almog, his spray can detect minute traces of the improvised explosive on hands of suspects, door handles, luggage containers and vehicles, and it can distinguish between sugar or any innocent looking powder and urea nitrate.

Prof. Almog, who says the spray detector is easy to use and inexpensive, sees it being adopted as a standard arsenal of law enforcement agencies, security services, and the military and at certain check-points at air and sea ports. He said that as well as enabling better understanding of the chemistry of urea nitrate, this discovery may also play an important role in legal procedures.

With a long history of inventing color changing test fluids for law enforcement, Prof. Almog is a former Israeli Police Brigadier General and Director of the Identification and Forensic Science Division of the Israeli Police. His team has led a great deal of groundbreaking research in past years, including the development of the chemical FerroTrace which turns purple when the user has recently held a weapon. Prof. Almog is the recipient of the Lucas Medal, the highest award of The American Academy of Forensic Sciences for 2005, "for outstanding achievements in forensic science".

For further information, contact:

Rebecca Zeffert, Dept. of Media Relations, the Hebrew University, tel: 02-588-1641, cell: 054-882-0661

or Orit Sulitzeanu, Hebrew University spokesperson, tel: 02-5882910, cell: 054-882 0016.

Rebecca Zeffert
Foreign Press Liaison
Dept. of Media Relations
Hebrew University of Jerusalem
Tel: +972 (0)2-588 1641
Cell: +972 (0)54 882 0661
Skype: rebeccazeffert
E-mail: rebeccaz@savion.huji.ac.il

Rebecca Zeffert | Hebrew University
Further information:
http://media.huji.ac.il
http://www.huji.ac.il

Further reports about: Almog Chemical Scientist nitrate urea

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>