Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Odd protein interaction guides development of olfactory system

30.10.2007
Scientists have discovered a strange mechanism for the development of the fruit fly antennal lobe, an intricate structure that converts the chaotic stew of odors in the environment into discrete signals in the brain.

The fruit fly antennal lobe is analogous to the olfactory bulb in humans.

Researchers at the University of Illinois found that in the fly’s antennal lobe a common nervous system receptor actually inhibits the activity of the protein it binds. This is the first time a receptor has been found to behave this way in normal, healthy cells.

The study appears this month in Nature Neuroscience.

... more about:
»Hing »Ligand »Protein »Wnt5 »antennal »derailed »glomeruli »olfactory »receptor

Receptors and the proteins that bind to them normally work in concert to generate a cascade of changes within cells. A receptor may be embedded in the cell membrane, waiting for a specific protein, called a ligand, to bind to it. Binding often causes the receptor to change its shape, allowing it to interact with other components in the cell. These reactions continue until a specific task is accomplished. Receptors and ligands are fundamental to most chemical signaling in the body, and normally they work together.

The new mechanism, which directs the growth and development of tens of thousands of neurons that are vital to odor detection, instead involves a receptor that disables its protein ligand. The receptor is called “derailed” because its absence causes neurons to grow wildly off-track. The ligand that binds to the derailed receptor is known as Wnt5 (pronounced “wint 5” – short for “wingless insertion 5”). Both derailed and Wnt5 are known to play key roles in the growth and development of the nervous system.

“In the antennal lobe, derailed is acting as a decoy receptor,” said U. of I. cell and developmental biology professor Huey Hing, who led the study.

“It is nonproductively just sucking up the ligand. Nobody has ever seen a receptor acting in this way. The receptor is actually regulating the ligand.”

The researchers made this discovery when they compared the development of normal antennal lobes to those that formed when Wnt5 or derailed were missing, present at very low levels, or present at extremely high levels.

When Wnt5 was absent, the normally symmetrical odor-sensing structures, called glomeruli, were smaller, malformed, and grew in lopsided positions in the antennal lobes. The commissure, a network of neural fibers that connects the lobes, also was missing.

Because receptors and their ligands normally work together, the researchers expected to see the same problems in the mutant that lacked the derailed receptor. But in these mutants they observed a new phenomenon: Not only were the glomeruli misplaced, they were also growing in the commissure, where they had never been seen before.

“This is when we realized something weird was going on,” Hing said.

This growth of glomeruli in the commissure also occurred when Wnt5 was present at extremely high levels. These observations indicated that the derailed receptors were somehow keeping the Wnt5 protein in check. When derailed was absent Wnt5 was moving into regions where it didn’t belong, and the neural fibers that formed the glomeruli were following. Neural development was truly “derailed.”

Further studies determined that supporting cells – not the neurons themselves – were expressing the derailed receptor.

The study reveals an unusual mechanism that is important to the development of the olfactory system, and perhaps to other parts of the nervous system, Hing said. But it also will interest cancer researchers, he said, because the genes that code for the Wnt class of proteins are oncogenes, which sometimes induce the growth of cancer cells.

“Perhaps one day down the road we can make pharmaceutical agents that imitate the role of the derailed receptor,” Hing said.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu
http://www.life.uiuc.edu/hing/

Further reports about: Hing Ligand Protein Wnt5 antennal derailed glomeruli olfactory receptor

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>