Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Odd protein interaction guides development of olfactory system

30.10.2007
Scientists have discovered a strange mechanism for the development of the fruit fly antennal lobe, an intricate structure that converts the chaotic stew of odors in the environment into discrete signals in the brain.

The fruit fly antennal lobe is analogous to the olfactory bulb in humans.

Researchers at the University of Illinois found that in the fly’s antennal lobe a common nervous system receptor actually inhibits the activity of the protein it binds. This is the first time a receptor has been found to behave this way in normal, healthy cells.

The study appears this month in Nature Neuroscience.

... more about:
»Hing »Ligand »Protein »Wnt5 »antennal »derailed »glomeruli »olfactory »receptor

Receptors and the proteins that bind to them normally work in concert to generate a cascade of changes within cells. A receptor may be embedded in the cell membrane, waiting for a specific protein, called a ligand, to bind to it. Binding often causes the receptor to change its shape, allowing it to interact with other components in the cell. These reactions continue until a specific task is accomplished. Receptors and ligands are fundamental to most chemical signaling in the body, and normally they work together.

The new mechanism, which directs the growth and development of tens of thousands of neurons that are vital to odor detection, instead involves a receptor that disables its protein ligand. The receptor is called “derailed” because its absence causes neurons to grow wildly off-track. The ligand that binds to the derailed receptor is known as Wnt5 (pronounced “wint 5” – short for “wingless insertion 5”). Both derailed and Wnt5 are known to play key roles in the growth and development of the nervous system.

“In the antennal lobe, derailed is acting as a decoy receptor,” said U. of I. cell and developmental biology professor Huey Hing, who led the study.

“It is nonproductively just sucking up the ligand. Nobody has ever seen a receptor acting in this way. The receptor is actually regulating the ligand.”

The researchers made this discovery when they compared the development of normal antennal lobes to those that formed when Wnt5 or derailed were missing, present at very low levels, or present at extremely high levels.

When Wnt5 was absent, the normally symmetrical odor-sensing structures, called glomeruli, were smaller, malformed, and grew in lopsided positions in the antennal lobes. The commissure, a network of neural fibers that connects the lobes, also was missing.

Because receptors and their ligands normally work together, the researchers expected to see the same problems in the mutant that lacked the derailed receptor. But in these mutants they observed a new phenomenon: Not only were the glomeruli misplaced, they were also growing in the commissure, where they had never been seen before.

“This is when we realized something weird was going on,” Hing said.

This growth of glomeruli in the commissure also occurred when Wnt5 was present at extremely high levels. These observations indicated that the derailed receptors were somehow keeping the Wnt5 protein in check. When derailed was absent Wnt5 was moving into regions where it didn’t belong, and the neural fibers that formed the glomeruli were following. Neural development was truly “derailed.”

Further studies determined that supporting cells – not the neurons themselves – were expressing the derailed receptor.

The study reveals an unusual mechanism that is important to the development of the olfactory system, and perhaps to other parts of the nervous system, Hing said. But it also will interest cancer researchers, he said, because the genes that code for the Wnt class of proteins are oncogenes, which sometimes induce the growth of cancer cells.

“Perhaps one day down the road we can make pharmaceutical agents that imitate the role of the derailed receptor,” Hing said.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu
http://www.life.uiuc.edu/hing/

Further reports about: Hing Ligand Protein Wnt5 antennal derailed glomeruli olfactory receptor

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>