Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aggregation propensity, amyloid peptide toxicity, and Alzheimer Disease

30.10.2007
Cells have evolved multiple mechanisms to ensure proper folding, but a number of molecular and biophysical events—such as changes in pH or temperature, mutations, and oxidation—can disrupt a protein’s native shape.

When polypeptides fail to achieve or maintain their proper conformation, they commonly aggregate into abnormal “amyloid fibril” structures. Amyloid fibrils define a diverse group of degenerative conditions, including amyotrophic lateral sclerosis, prion diseases, and Alzheimer and Parkinson diseases.

In Alzheimer disease, the amyloid fibrils are deposited extracellularly; however, in Parkinson and Huntington disease, similar amyloid fibrils accumulate in the cytoplasm and nucleus of the cell respectively. How amyloid formation promotes disease has generated considerable debate, though mounting evidence implicates the early protofibrillar aggregates as the toxic species.

In a new study in the open-access journal PLoS Biology, Leila Luheshi et al. worked with the fruit fly Drosophila to identify the intrinsic determinants of amyloid ß (Aß) pathogenicity in an animal model of Alzheimer disease. (Aß peptide is a primary component of amyloid plaques in the brains of patients with Alzheimer disease.) Determining how amyloid formation causes disease requires a better understanding of the molecular and biophysical conditions that promote protein aggregation. But such an understanding has proven technically challenging, in part because protein misfolding and aggregation in test tubes can’t replicate cellular pathways designed to mitigate the toxic effects of these events. Luheshi et al. circumvented this problem by integrating computational predictions of protein aggregation propensities with in vitro experiments to test the predictions and in vivo mutagenesis experiments to link predicted aggregation propensity with observed neurodegeneration in the flies.

Overall, the researchers found a clear correlation between a variant’s predicted tendency to aggregate and its influence on fly longevity. The same relationship was seen between predicted aggregation propensity and locomotion, though a few variants did not follow this pattern. An interesting case presented with a variant (131E/E22G), whose neuronal effects did not match its predicted aggregation propensity. The 131E/E22G peptide aggregated at rates similar to the Alzheimer variant in vitro as well as in the fly brains. But because the 131E/E22G peptide deposits were not accompanied by cavities in brain tissue—a telltale sign of neurodegeneration—the flies showed no neurological deficits.

This finding fits with reports that the density of Aß plaques in elderly patients with Alzheimer disease does not correlate with the severity of clinical symptoms. Instead, it is the soluble protofibrillar aggregates, not the mature amyloid plaques, that cause neurodegeneration. Recomputing the propensities of each Aß variant to form these protofibrillar species revealed not only an improved overall correlation with toxicity, but it also brought the previously anomalous 131E/E22G variant in line with the prediction algorithm.

Altogether, these results show that Aß’s toxic effects in a living organism can be predicted based on a computational analysis of its tendency to form protofibrillar aggregates. And even though cells have evolved multiple mechanisms to regulate folding, the researchers argue, it is the intrinsic tendency of the peptide’s sequence to aggregate that governs its pathological propensity. Though the researchers focused on the peptide most closely associated with Alzheimer disease, they believe their approach will work for many other diseases as well.

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050290

Further reports about: 131E/E22G Aggregation Amyloid Peptide aggregate prediction propensity protofibrillar

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>