Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aggregation propensity, amyloid peptide toxicity, and Alzheimer Disease

Cells have evolved multiple mechanisms to ensure proper folding, but a number of molecular and biophysical events—such as changes in pH or temperature, mutations, and oxidation—can disrupt a protein’s native shape.

When polypeptides fail to achieve or maintain their proper conformation, they commonly aggregate into abnormal “amyloid fibril” structures. Amyloid fibrils define a diverse group of degenerative conditions, including amyotrophic lateral sclerosis, prion diseases, and Alzheimer and Parkinson diseases.

In Alzheimer disease, the amyloid fibrils are deposited extracellularly; however, in Parkinson and Huntington disease, similar amyloid fibrils accumulate in the cytoplasm and nucleus of the cell respectively. How amyloid formation promotes disease has generated considerable debate, though mounting evidence implicates the early protofibrillar aggregates as the toxic species.

In a new study in the open-access journal PLoS Biology, Leila Luheshi et al. worked with the fruit fly Drosophila to identify the intrinsic determinants of amyloid ß (Aß) pathogenicity in an animal model of Alzheimer disease. (Aß peptide is a primary component of amyloid plaques in the brains of patients with Alzheimer disease.) Determining how amyloid formation causes disease requires a better understanding of the molecular and biophysical conditions that promote protein aggregation. But such an understanding has proven technically challenging, in part because protein misfolding and aggregation in test tubes can’t replicate cellular pathways designed to mitigate the toxic effects of these events. Luheshi et al. circumvented this problem by integrating computational predictions of protein aggregation propensities with in vitro experiments to test the predictions and in vivo mutagenesis experiments to link predicted aggregation propensity with observed neurodegeneration in the flies.

Overall, the researchers found a clear correlation between a variant’s predicted tendency to aggregate and its influence on fly longevity. The same relationship was seen between predicted aggregation propensity and locomotion, though a few variants did not follow this pattern. An interesting case presented with a variant (131E/E22G), whose neuronal effects did not match its predicted aggregation propensity. The 131E/E22G peptide aggregated at rates similar to the Alzheimer variant in vitro as well as in the fly brains. But because the 131E/E22G peptide deposits were not accompanied by cavities in brain tissue—a telltale sign of neurodegeneration—the flies showed no neurological deficits.

This finding fits with reports that the density of Aß plaques in elderly patients with Alzheimer disease does not correlate with the severity of clinical symptoms. Instead, it is the soluble protofibrillar aggregates, not the mature amyloid plaques, that cause neurodegeneration. Recomputing the propensities of each Aß variant to form these protofibrillar species revealed not only an improved overall correlation with toxicity, but it also brought the previously anomalous 131E/E22G variant in line with the prediction algorithm.

Altogether, these results show that Aß’s toxic effects in a living organism can be predicted based on a computational analysis of its tendency to form protofibrillar aggregates. And even though cells have evolved multiple mechanisms to regulate folding, the researchers argue, it is the intrinsic tendency of the peptide’s sequence to aggregate that governs its pathological propensity. Though the researchers focused on the peptide most closely associated with Alzheimer disease, they believe their approach will work for many other diseases as well.

Andrew Hyde | alfa
Further information:

Further reports about: 131E/E22G Aggregation Amyloid Peptide aggregate prediction propensity protofibrillar

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>