Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell Pathway, Disease Linked To Histone Action

29.10.2007
University of Alabama at Birmingham (UAB) researchers have discovered a key cell-signaling pathway that regulates cell progression and switches on front-to-back body patterning in tadpoles.

Uncovering this signaling pathway will greatly assist scientists in understanding the complex DNA and cell interplay that leads to abnormal cell growth, a hallmark of cancer and other diseases.

The UAB team focused on the pathway that led to deregulation of a protein called H2A and how those changes influenced cell growth. The results are published in the journal Nature.

H2A is a part of a class of proteins called histones, which hold their own code for how the genetic DNA inside cells is used to form tissues, bones and other structures. In the Nature study, a protein was identified that modifies H2A, which in turn regulates normal cell pathways and cell growth.

... more about:
»Protein »UAB »histones »pathway

When the function of this protein was blocked in tadpole embryos, the front-to-back body patterning that happens as they mature was altered, said Hengbin Wang, Ph.D., an assistant professor in the UAB Department of Biochemistry and Molecular Genetics and lead author on the study.

Wang said the findings show potential in future research to identify biochemical agents or drugs that can target histones and influence cell production.

“Earlier research has looked at whether targeting histones during certain times of biological development will effectively ‘switch on or off’ certain pathways or patterning signals, Wang said. “Putting our finger on this switch would give geneticists, doctors and biochemists unprecedented control in stopping tumor growth and other human diseases.

“This finding goes along way toward helping us understand how histones like H2A are modified in the cell cycle and what that means for normal or abnormal physiological growth,” Wang said.

“One thing we know for sure is that modifying histones is very important to chromatin structure and function,” he said. Chromatin is the DNA and protein mixture that makes up chromosomes, the threadlike structures inside cells that are necessary for reproduction.

Wang’s team included Heui-Yun Joo, Ling Zhai and Chunying Yang of the UAB Department of Biochemistry and Molecular Genetics, along with Shuyi Nie and Chenebei Chang of the UAB Department of Cell Biology. Researchers from the molecular biology program at Memorial Sloan Kettering Cancer Center in New York contributed to the study.

Troy Goodman | EurekAlert!
Further information:
http://www.uab.edu

Further reports about: Protein UAB histones pathway

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>