Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell Pathway, Disease Linked To Histone Action

29.10.2007
University of Alabama at Birmingham (UAB) researchers have discovered a key cell-signaling pathway that regulates cell progression and switches on front-to-back body patterning in tadpoles.

Uncovering this signaling pathway will greatly assist scientists in understanding the complex DNA and cell interplay that leads to abnormal cell growth, a hallmark of cancer and other diseases.

The UAB team focused on the pathway that led to deregulation of a protein called H2A and how those changes influenced cell growth. The results are published in the journal Nature.

H2A is a part of a class of proteins called histones, which hold their own code for how the genetic DNA inside cells is used to form tissues, bones and other structures. In the Nature study, a protein was identified that modifies H2A, which in turn regulates normal cell pathways and cell growth.

... more about:
»Protein »UAB »histones »pathway

When the function of this protein was blocked in tadpole embryos, the front-to-back body patterning that happens as they mature was altered, said Hengbin Wang, Ph.D., an assistant professor in the UAB Department of Biochemistry and Molecular Genetics and lead author on the study.

Wang said the findings show potential in future research to identify biochemical agents or drugs that can target histones and influence cell production.

“Earlier research has looked at whether targeting histones during certain times of biological development will effectively ‘switch on or off’ certain pathways or patterning signals, Wang said. “Putting our finger on this switch would give geneticists, doctors and biochemists unprecedented control in stopping tumor growth and other human diseases.

“This finding goes along way toward helping us understand how histones like H2A are modified in the cell cycle and what that means for normal or abnormal physiological growth,” Wang said.

“One thing we know for sure is that modifying histones is very important to chromatin structure and function,” he said. Chromatin is the DNA and protein mixture that makes up chromosomes, the threadlike structures inside cells that are necessary for reproduction.

Wang’s team included Heui-Yun Joo, Ling Zhai and Chunying Yang of the UAB Department of Biochemistry and Molecular Genetics, along with Shuyi Nie and Chenebei Chang of the UAB Department of Cell Biology. Researchers from the molecular biology program at Memorial Sloan Kettering Cancer Center in New York contributed to the study.

Troy Goodman | EurekAlert!
Further information:
http://www.uab.edu

Further reports about: Protein UAB histones pathway

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>