Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell Pathway, Disease Linked To Histone Action

29.10.2007
University of Alabama at Birmingham (UAB) researchers have discovered a key cell-signaling pathway that regulates cell progression and switches on front-to-back body patterning in tadpoles.

Uncovering this signaling pathway will greatly assist scientists in understanding the complex DNA and cell interplay that leads to abnormal cell growth, a hallmark of cancer and other diseases.

The UAB team focused on the pathway that led to deregulation of a protein called H2A and how those changes influenced cell growth. The results are published in the journal Nature.

H2A is a part of a class of proteins called histones, which hold their own code for how the genetic DNA inside cells is used to form tissues, bones and other structures. In the Nature study, a protein was identified that modifies H2A, which in turn regulates normal cell pathways and cell growth.

... more about:
»Protein »UAB »histones »pathway

When the function of this protein was blocked in tadpole embryos, the front-to-back body patterning that happens as they mature was altered, said Hengbin Wang, Ph.D., an assistant professor in the UAB Department of Biochemistry and Molecular Genetics and lead author on the study.

Wang said the findings show potential in future research to identify biochemical agents or drugs that can target histones and influence cell production.

“Earlier research has looked at whether targeting histones during certain times of biological development will effectively ‘switch on or off’ certain pathways or patterning signals, Wang said. “Putting our finger on this switch would give geneticists, doctors and biochemists unprecedented control in stopping tumor growth and other human diseases.

“This finding goes along way toward helping us understand how histones like H2A are modified in the cell cycle and what that means for normal or abnormal physiological growth,” Wang said.

“One thing we know for sure is that modifying histones is very important to chromatin structure and function,” he said. Chromatin is the DNA and protein mixture that makes up chromosomes, the threadlike structures inside cells that are necessary for reproduction.

Wang’s team included Heui-Yun Joo, Ling Zhai and Chunying Yang of the UAB Department of Biochemistry and Molecular Genetics, along with Shuyi Nie and Chenebei Chang of the UAB Department of Cell Biology. Researchers from the molecular biology program at Memorial Sloan Kettering Cancer Center in New York contributed to the study.

Troy Goodman | EurekAlert!
Further information:
http://www.uab.edu

Further reports about: Protein UAB histones pathway

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>