Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers view swimming tactics of tiny aquatic predators

26.10.2007
Digital holographic microscopy provides 3-D look at microbes linked to fish kills

By applying state-of-the-art holographic microscopy to a major marine biology challenge, researchers from two Baltimore institutions have identified the swimming and attack patterns of two tiny but deadly microbes linked to fish kills in the Chesapeake Bay and other waterways.

The study, reported in the October 22-26 online Early Edition of Proceedings of the National Academy of Sciences, focused on the aquatic hunting tactics of two single-celled creatures classified as dinoflagellates. These two-tailed microbes feed on even smaller prey that are attracted to the algal blooms caused by water pollution.

Scientists are concerned because these dinoflagellates produce toxins that can kill large numbers of fish, but studying the predators under a conventional microscope is difficult because the tiny animals can quickly swim out of the microscope�s shallow field of focus.

In the journal article, the researchers from The Johns Hopkins University and the University of Maryland Biotechnology Institute reported that they had solved this depth-of-field problem through a technique called digital holographic microscopy, which captured three-dimensional images of the troublesome microbes. The process also enabled the team to identify the tiny predators� distinctly different swimming and hunting tactics.

�It�s like being at NASCAR with a �magical� pair of binoculars that can keep the entire field of view in focus, so cars both near and far are equally sharp and discernible,� said Robert Belas, a professor of microbiology at UMBI�s Center of Marine Biotechnology. �Digital holographic microscopy offers dramatic increases in depth-of-field.�

�This is a breakthrough technology in quantifying dinoflagellate behavior,� said Allen R. Place, a professor of biochemistry at UMBI�s Center of Marine Biotechnology. �We can now begin to look for answers that were previously unattainable.�

Chesapeake Bay fish kills caused by dinoflagellates are considered such a critical issue that Place and his colleagues at UMBI in 2006 were awarded a $1 million National Science Foundation grant to study the biology of this problem. The same microorganisms found in the bay are believed to also pose a threat to fish elsewhere.

The research is believed to represent a milestone in the application of in-line digital holographic microscopy. This technique consists of illuminating a sample volume with a collimated laser beam and recording the interference pattern generated by light scattered from organisms with the remainder of the beam. The interference pattern�the hologram�is magnified and recorded by a high-speed digital camera. Computational reconstruction and subsequent data analysis produces three-dimensional views of activity within a small sample of water.

�What�s unique is that we were able to use this technique to study the behavior of organisms that are congregated in a dense suspension,� said Joseph Katz, who is the William F. Ward Sr. Professor in the Department of Mechanical Engineering at Johns Hopkins. �We were able to simultaneously track thousands of these dinoflagellates over time and in three-dimensional space. And we were able to follow individual microorganisms as they swam in complex helical patterns.� Katz�s group has received several grants to develop and implement digital holography as a means of tracking particles, droplets and organisms in various flows, including an NSF grant to measure behavior of micro plankton such as dinoflagellates in the ocean.

The lead author of the PNAS article was Jian Sheng, who conducted research and developed the software while earning his doctorate in mechanical engineering in Katz�s lab at Johns Hopkins. Sheng currently is an assistant professor at the University of Kentucky and a visiting scientist at Johns Hopkins.

For this project, the team focused on two toxic dinoflagellates: Karlodinium veneficum and Pfiesteria piscicida, both of which feed on somewhat smaller non-poisonous microbes commonly found in algal blooms. In Katz�s lab, the researchers recorded cinematic digital holograms of the two predators alone and in the presence of prey. They found that when a potential meal was nearby, the predators abandoned their random swimming and clustered around their prey. The team also discovered that Karlodinium microbes moved in both left- and right-hand helices, while the Pfiesteria swam only in right-hand helices. In addition, the researchers saw starkly different hunting tactics. The Karlodinium appeared to slow down and wait to �ambush� its prey; the speedier Pfiesteria was a more active hunter, increasing its speed and radius of helical trajectories while pursuing its prey.

Just like lions might shift into �stealth mode� when tracking a herd of impala on the African plains, microscopic predators apparently also need to alter their behavior in order to bring down their tiny prey, the researchers concluded. In the fluid realm of fast-swimming microbes, the scientists said, this study has shown for the first time just how the dinoflagellate predators respond to cues and alter the way in which they swim to become more formidable hunters.

Gaining a better understanding of the behavior of these microbes may lead to new ways to avert the fish kills attributed to dinoflagellate toxins.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu
http://www.umbi.org

Further reports about: Holographic Microscopy Predators dinoflagellate microbes pattern tactics view

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>