Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds new light on how diseases jump across species

26.10.2007
Researchers at the University of Leeds have made a breakthrough in understanding a virus which poses one of the greatest global disease threats to wild carnivores including lions, African wild dogs and several types of seal.

The discovery of how canine distemper Virus (CDV) jumps across and infects different species of carnivores could lead to a more effective monitoring and control of the virus.

Whilst these ‘pathogen jumps’ across species are quite common, very little is known about the process of how viruses takes hold and become established in new host species.

CDV is passed through close contact from domestic and feral dogs causing epidemics that often result in mass mortalities – and is pushing some species to the brink of extinction (2).

... more about:
»CDV »Disease »Host »carnivore »domestic »epidemic »infect

“The virus needs to bind to a specific receptor on cells in the host in order to infect it,” explains lead researcher, PhD student Alex McCarthy, from the University’s Faculty of Biological Sciences. “But the sequences of receptors vary between species, so a virus from one species shouldn’t be able recognise and infect the cells of other species.”

By analysing the virus’ genetic sequence in both dog and wild carnivore species, the research team were able to prove that two key parts of a CDV protein specifically involved in receptor recognition had evolved during the host jumps, where as the rest of the protein showed very few changes among viruses from different species.

“It was a very satisfying moment when our ideas proved correct,” says McCarthy. “The results really screamed out at us. They were so clear-cut, we think it’s highly likely that pathogen evolution is a much more general mechanism in cross-species transmission of viruses than anyone imagined.”

The findings could lead on to new antiviral therapies that are targeted at the binding mechanism, to prevent the virus from taking hold, rather than trying to eradicate it once it’s in the host’s system.

Current conservation policies include vaccination of wild animal populations, but this is not appropriate for logistical or biological reasons for most species. Alternative strategies include vaccination of neighbouring domestic and feral dog populations, which prevents CDV circulating in dogs and therefore limits transmission to wildlife. Culling the surrounding domestic reservoir species, such as dogs, is also an option, but this is more controversial because its efficacy can be questionable and because of the impact this can have on support from local communities for wider conservation efforts.

The spread and incidences of CDV epidemics are increasing, due to globalisation and the rise in the domestic and feral dog populations associated with growing human populations, especially where these impinge on previously undisturbed habitats.

“CDV in wild carnivore populations is usually fatal” says McCarthy. “So as well as the possibility of developing new therapies, the techniques used in this research offer a way of predicting when local virus isolates may become capable of causing a full blown epidemic in species of conservation concern.”

The research could have similar implications for developing new therapies for pathogenic diseases that have successfully crossed species to humans. Additionally, the team believes that the phenomenon may be involved in the emergence of many new, previously species-specific diseases that have been able to infect new host species, such as SARS, Hendra and Nipah Virus.

Jo Kelly | alfa
Further information:
http://reporter.leeds.ac.uk/press_releases/current/distemper.htm

Further reports about: CDV Disease Host carnivore domestic epidemic infect

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>