Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds new light on how diseases jump across species

26.10.2007
Researchers at the University of Leeds have made a breakthrough in understanding a virus which poses one of the greatest global disease threats to wild carnivores including lions, African wild dogs and several types of seal.

The discovery of how canine distemper Virus (CDV) jumps across and infects different species of carnivores could lead to a more effective monitoring and control of the virus.

Whilst these ‘pathogen jumps’ across species are quite common, very little is known about the process of how viruses takes hold and become established in new host species.

CDV is passed through close contact from domestic and feral dogs causing epidemics that often result in mass mortalities – and is pushing some species to the brink of extinction (2).

... more about:
»CDV »Disease »Host »carnivore »domestic »epidemic »infect

“The virus needs to bind to a specific receptor on cells in the host in order to infect it,” explains lead researcher, PhD student Alex McCarthy, from the University’s Faculty of Biological Sciences. “But the sequences of receptors vary between species, so a virus from one species shouldn’t be able recognise and infect the cells of other species.”

By analysing the virus’ genetic sequence in both dog and wild carnivore species, the research team were able to prove that two key parts of a CDV protein specifically involved in receptor recognition had evolved during the host jumps, where as the rest of the protein showed very few changes among viruses from different species.

“It was a very satisfying moment when our ideas proved correct,” says McCarthy. “The results really screamed out at us. They were so clear-cut, we think it’s highly likely that pathogen evolution is a much more general mechanism in cross-species transmission of viruses than anyone imagined.”

The findings could lead on to new antiviral therapies that are targeted at the binding mechanism, to prevent the virus from taking hold, rather than trying to eradicate it once it’s in the host’s system.

Current conservation policies include vaccination of wild animal populations, but this is not appropriate for logistical or biological reasons for most species. Alternative strategies include vaccination of neighbouring domestic and feral dog populations, which prevents CDV circulating in dogs and therefore limits transmission to wildlife. Culling the surrounding domestic reservoir species, such as dogs, is also an option, but this is more controversial because its efficacy can be questionable and because of the impact this can have on support from local communities for wider conservation efforts.

The spread and incidences of CDV epidemics are increasing, due to globalisation and the rise in the domestic and feral dog populations associated with growing human populations, especially where these impinge on previously undisturbed habitats.

“CDV in wild carnivore populations is usually fatal” says McCarthy. “So as well as the possibility of developing new therapies, the techniques used in this research offer a way of predicting when local virus isolates may become capable of causing a full blown epidemic in species of conservation concern.”

The research could have similar implications for developing new therapies for pathogenic diseases that have successfully crossed species to humans. Additionally, the team believes that the phenomenon may be involved in the emergence of many new, previously species-specific diseases that have been able to infect new host species, such as SARS, Hendra and Nipah Virus.

Jo Kelly | alfa
Further information:
http://reporter.leeds.ac.uk/press_releases/current/distemper.htm

Further reports about: CDV Disease Host carnivore domestic epidemic infect

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>