Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Legionnaire's bacterial proteins work together to survive

25.10.2007
Proteins within the bacteria that cause Legionnaire’s disease can kidnap their own molecular “coffin” and carry it to a safe place within the cell, ensuring their survival, Yale School of Medicine researchers report in Nature Wednesday.

“This supposedly simple organism continues to fascinate us with new tricks that enable it to manipulate cells in our body that normally protect us against bacterial infections,” said the lead author, Craig Roy, associate professor of microbial pathogenesis at Yale.

Legionnaire’s disease acquired its name in 1976 when an outbreak of pneumonia occurred among people attending a convention of the American Legion in Philadelphia. The bacteria that causes it—Legionella pneumophila—replicates inside macrophage, which are cells that are part of the immune system and “eat” cellular debris and toxins. Macrophages kill bacteria by transporting them in storage bubbles known as vacuoles to organelles that have enzymes to then break down the intruders.

“What makes this pathogen special is that it can control transport of the vacuole formed after macrophages ingest the bacterium,” Roy said. “It hijacks the vacuole and directs it to be transported to a nutrient-rich organelle called the endoplasmic reticulum, where the bacteria replicate in high numbers.”

Roy and his colleagues identified the Legionella proteins that are involved in the hijacking. They found that one protein, DrrA, that turns on a molecular switch, Rab1, and subverts its function. This allows the Legionella to fuse the endoplasmic reticulum and the vacuole, creating a compartment that ensures bacterial survival. They also found a second bacterial protein, LepB, that turns off the Rab1 switch once the bacteria have successfully entered the endoplasmic reticulum.

“In other words,” Roy said, “you can think of Legionella as being a crafty burglar that enters a cell and uses the protein DrrA to turn on a light, Rab1, that will illuminate the location of the safe, the endoplasmic reticulum. Once Legionella has cracked the safe, LepB, turns off the light to avoid detection.”

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: Legionella bacterial endoplasmic endoplasmic reticulum vacuole

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>