Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Legionnaire's bacterial proteins work together to survive

25.10.2007
Proteins within the bacteria that cause Legionnaire’s disease can kidnap their own molecular “coffin” and carry it to a safe place within the cell, ensuring their survival, Yale School of Medicine researchers report in Nature Wednesday.

“This supposedly simple organism continues to fascinate us with new tricks that enable it to manipulate cells in our body that normally protect us against bacterial infections,” said the lead author, Craig Roy, associate professor of microbial pathogenesis at Yale.

Legionnaire’s disease acquired its name in 1976 when an outbreak of pneumonia occurred among people attending a convention of the American Legion in Philadelphia. The bacteria that causes it—Legionella pneumophila—replicates inside macrophage, which are cells that are part of the immune system and “eat” cellular debris and toxins. Macrophages kill bacteria by transporting them in storage bubbles known as vacuoles to organelles that have enzymes to then break down the intruders.

“What makes this pathogen special is that it can control transport of the vacuole formed after macrophages ingest the bacterium,” Roy said. “It hijacks the vacuole and directs it to be transported to a nutrient-rich organelle called the endoplasmic reticulum, where the bacteria replicate in high numbers.”

Roy and his colleagues identified the Legionella proteins that are involved in the hijacking. They found that one protein, DrrA, that turns on a molecular switch, Rab1, and subverts its function. This allows the Legionella to fuse the endoplasmic reticulum and the vacuole, creating a compartment that ensures bacterial survival. They also found a second bacterial protein, LepB, that turns off the Rab1 switch once the bacteria have successfully entered the endoplasmic reticulum.

“In other words,” Roy said, “you can think of Legionella as being a crafty burglar that enters a cell and uses the protein DrrA to turn on a light, Rab1, that will illuminate the location of the safe, the endoplasmic reticulum. Once Legionella has cracked the safe, LepB, turns off the light to avoid detection.”

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: Legionella bacterial endoplasmic endoplasmic reticulum vacuole

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>