Legionnaire's bacterial proteins work together to survive

“This supposedly simple organism continues to fascinate us with new tricks that enable it to manipulate cells in our body that normally protect us against bacterial infections,” said the lead author, Craig Roy, associate professor of microbial pathogenesis at Yale.

Legionnaire’s disease acquired its name in 1976 when an outbreak of pneumonia occurred among people attending a convention of the American Legion in Philadelphia. The bacteria that causes it—Legionella pneumophila—replicates inside macrophage, which are cells that are part of the immune system and “eat” cellular debris and toxins. Macrophages kill bacteria by transporting them in storage bubbles known as vacuoles to organelles that have enzymes to then break down the intruders.

“What makes this pathogen special is that it can control transport of the vacuole formed after macrophages ingest the bacterium,” Roy said. “It hijacks the vacuole and directs it to be transported to a nutrient-rich organelle called the endoplasmic reticulum, where the bacteria replicate in high numbers.”

Roy and his colleagues identified the Legionella proteins that are involved in the hijacking. They found that one protein, DrrA, that turns on a molecular switch, Rab1, and subverts its function. This allows the Legionella to fuse the endoplasmic reticulum and the vacuole, creating a compartment that ensures bacterial survival. They also found a second bacterial protein, LepB, that turns off the Rab1 switch once the bacteria have successfully entered the endoplasmic reticulum.

“In other words,” Roy said, “you can think of Legionella as being a crafty burglar that enters a cell and uses the protein DrrA to turn on a light, Rab1, that will illuminate the location of the safe, the endoplasmic reticulum. Once Legionella has cracked the safe, LepB, turns off the light to avoid detection.”

Media Contact

Jacqueline Weaver EurekAlert!

More Information:

http://www.yale.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors