Bird flu finds children's lungs faster

John Nicholls and colleagues at the University of Hong Kong and Adelaide Women and Children's Hospital, in Australia, describe a modified technique to visualize the putative receptors for influenza viruses in the upper and lower respiratory tract, including the lung.

Sialic acid molecules on the cell surface act as chemical beacons for the influenza virus. Once the virus finds sialic acid, it can attach and infect the cell, although the precise distribution of sialic acid molecules affects how easily the virus can find host cells to infect.

The team has turned to lectins- molecules which bind sugars, to help them differentiate receptors for human and avian influenza viruses. The researchers used an improved staining technique to see how well two lectins, Sambucus nigra agglutinin (SNA) and Maackia amurensis agglutinin (MAA), bind to different forms of sialic acid on respiratory tract cells in healthy adults and children. SNA is particularly good at identifying the receptor for human influenza viruses while MAA identifies the receptor for avian viruses – including H5N1.

The researchers found that a particular form of MAA (MAA1) displayed widespread binding throughout the respiratory tract, but was particularly good at binding to children's cells in the lower respiratory tract as well as the upper respiratory tract of adults. Although this MAA1 binding is not unique for avian influenza receptors, these findings could explain how avian influenza infects children more readily than it does adults. This may explain previous findings from this group that avian H5N1 viruses can infect the human upper respiratory tract, even though these tissues were thought to lack receptors for these viruses.

“Understanding the how and why of avian virus infection of humans is a very complex process involving research into properties of H5N1 virus, the host receptor and the cellular response” said Dr John Nicholls. “We believe that the studies we have done investigating where the receptors are located and their distribution with age is a small step towards unravelling this process and help in finding ways to diminish the potential treat from this emerging infection.”

Media Contact

Charlotte Webber alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors