Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epstein-Barr: a virtual look at a vexing virus

24.10.2007
Researchers at Tufts University School of Medicine in collaboration with the Virginia Bioinformatics Institute at Virginia Tech have created a computer program called Pathogen Simulation (PathSim) to study the progression of Epstein-Barr virus (EBV) in humans.

David Thorley-Lawson, PhD, professor of pathology at Tufts University School of Medicine, is combining PathSim, laboratory methods, and clinical studies to provide a new and powerful approach to understanding EBV and ultimately designing anti-viral therapies.

“PathSim is an agent-based computer program. The agents are the virus itself, and the T and B cells of the patient’s immune system,” explains Thorley-Lawson. Using PathSim, Thorley-Lawson can manipulate these agents to simulate EBV infection and persistence in humans. “EBV can infect one person and remain latent – not cause any symptoms. It can infect another person and cause infectious mononucleosis, or, in rare cases, cancer, like Hodgkin’s, Burkitt’s, and immunoblastic lymphomas,” says Thorley-Lawson.

“Scientists can use PathSim like a video game and change variables, such as number of virus particles or characteristics of the patient’s immune cells, to follow the course of disease and observe what drives the virus to either latency or illness.

... more about:
»Agent »EBV »PathSim »Thorley-Lawson »immune »immune cell

We validated PathSim by comparing it to EBV infection in patients,” says Thorley-Lawson. “For example, PathSim projected that the peak in the number of infected immune cells, called B cells, would occur 33 through 38 days post-infection, which is consistent with the peak of 35 through 50 days actually seen in infected patients. This consistency is important because it validates the predictive power of PathSim; the power to reveal what EBV is doing in a patient’s body,” says Thorley-Lawson.

“It takes one full week to run one simulation,” says Thorley-Lawson. “Then we compile the data and look for critical switch points of disease.” A switch point is a small change in the behavior of an agent that can influence the progression of disease. Such a change may determine whether the virus persists in the body in a latent state, or causes illness and even death by replicating out of control. “Once these critical switch points are understood, biologists may be able to develop drugs that target specific points in the interaction between the virus and immune system at specific times,” explains Thorley-Lawson. “The more targeted the drug, the more safe and effective the resulting therapy. We hope that this marriage of computers and biology will eventually lead to better patient treatment against EBV.”

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

Further reports about: Agent EBV PathSim Thorley-Lawson immune immune cell

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>