Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epstein-Barr: a virtual look at a vexing virus

24.10.2007
Researchers at Tufts University School of Medicine in collaboration with the Virginia Bioinformatics Institute at Virginia Tech have created a computer program called Pathogen Simulation (PathSim) to study the progression of Epstein-Barr virus (EBV) in humans.

David Thorley-Lawson, PhD, professor of pathology at Tufts University School of Medicine, is combining PathSim, laboratory methods, and clinical studies to provide a new and powerful approach to understanding EBV and ultimately designing anti-viral therapies.

“PathSim is an agent-based computer program. The agents are the virus itself, and the T and B cells of the patient’s immune system,” explains Thorley-Lawson. Using PathSim, Thorley-Lawson can manipulate these agents to simulate EBV infection and persistence in humans. “EBV can infect one person and remain latent – not cause any symptoms. It can infect another person and cause infectious mononucleosis, or, in rare cases, cancer, like Hodgkin’s, Burkitt’s, and immunoblastic lymphomas,” says Thorley-Lawson.

“Scientists can use PathSim like a video game and change variables, such as number of virus particles or characteristics of the patient’s immune cells, to follow the course of disease and observe what drives the virus to either latency or illness.

... more about:
»Agent »EBV »PathSim »Thorley-Lawson »immune »immune cell

We validated PathSim by comparing it to EBV infection in patients,” says Thorley-Lawson. “For example, PathSim projected that the peak in the number of infected immune cells, called B cells, would occur 33 through 38 days post-infection, which is consistent with the peak of 35 through 50 days actually seen in infected patients. This consistency is important because it validates the predictive power of PathSim; the power to reveal what EBV is doing in a patient’s body,” says Thorley-Lawson.

“It takes one full week to run one simulation,” says Thorley-Lawson. “Then we compile the data and look for critical switch points of disease.” A switch point is a small change in the behavior of an agent that can influence the progression of disease. Such a change may determine whether the virus persists in the body in a latent state, or causes illness and even death by replicating out of control. “Once these critical switch points are understood, biologists may be able to develop drugs that target specific points in the interaction between the virus and immune system at specific times,” explains Thorley-Lawson. “The more targeted the drug, the more safe and effective the resulting therapy. We hope that this marriage of computers and biology will eventually lead to better patient treatment against EBV.”

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

Further reports about: Agent EBV PathSim Thorley-Lawson immune immune cell

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>