Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epstein-Barr: a virtual look at a vexing virus

24.10.2007
Researchers at Tufts University School of Medicine in collaboration with the Virginia Bioinformatics Institute at Virginia Tech have created a computer program called Pathogen Simulation (PathSim) to study the progression of Epstein-Barr virus (EBV) in humans.

David Thorley-Lawson, PhD, professor of pathology at Tufts University School of Medicine, is combining PathSim, laboratory methods, and clinical studies to provide a new and powerful approach to understanding EBV and ultimately designing anti-viral therapies.

“PathSim is an agent-based computer program. The agents are the virus itself, and the T and B cells of the patient’s immune system,” explains Thorley-Lawson. Using PathSim, Thorley-Lawson can manipulate these agents to simulate EBV infection and persistence in humans. “EBV can infect one person and remain latent – not cause any symptoms. It can infect another person and cause infectious mononucleosis, or, in rare cases, cancer, like Hodgkin’s, Burkitt’s, and immunoblastic lymphomas,” says Thorley-Lawson.

“Scientists can use PathSim like a video game and change variables, such as number of virus particles or characteristics of the patient’s immune cells, to follow the course of disease and observe what drives the virus to either latency or illness.

... more about:
»Agent »EBV »PathSim »Thorley-Lawson »immune »immune cell

We validated PathSim by comparing it to EBV infection in patients,” says Thorley-Lawson. “For example, PathSim projected that the peak in the number of infected immune cells, called B cells, would occur 33 through 38 days post-infection, which is consistent with the peak of 35 through 50 days actually seen in infected patients. This consistency is important because it validates the predictive power of PathSim; the power to reveal what EBV is doing in a patient’s body,” says Thorley-Lawson.

“It takes one full week to run one simulation,” says Thorley-Lawson. “Then we compile the data and look for critical switch points of disease.” A switch point is a small change in the behavior of an agent that can influence the progression of disease. Such a change may determine whether the virus persists in the body in a latent state, or causes illness and even death by replicating out of control. “Once these critical switch points are understood, biologists may be able to develop drugs that target specific points in the interaction between the virus and immune system at specific times,” explains Thorley-Lawson. “The more targeted the drug, the more safe and effective the resulting therapy. We hope that this marriage of computers and biology will eventually lead to better patient treatment against EBV.”

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

Further reports about: Agent EBV PathSim Thorley-Lawson immune immune cell

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>