Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A 'fault' in the cellular power plant explains the abnormal metabolism of tumours

The increased consumption of glucose that tumour cells exhibit, was thought to be a cause of the extra demand of building blocks required to keep up with an uncontrolled cell growth, but now it is more accepted that it could be the effect of a programmed metabolic change that favours this malignant growth.

The German Nobel laureate Otto Warburg, one of twentieth century's leading scientists observed that tumour cells exhibit an increased aerobic glucose metabolism in their glycolysis process.

Seeing that, Warburg concluded that cancer should be interpreted as a mitochondrial dysfunction, but his hypothesis was not accepted at the time, and was forgotten by the scientific community until it was recently experimentally confirmed, arousing great interest in biotechnological and pharmaceutical companies.

The comeback of Warburg's hypothesis has been greatly helped by the research of a group of Spanish physicians and scientists from the “12 de octubre” hospital in Madrid (López-Ríos, García-García, Pozo-Rodriguez, López-Encuentra and Ballestín) and from the “Universidad Autónoma de Madrid” (Sanchéz-Aragó, Ortega y Berrendero) under the direction of José Manuel Cuezva, professor of biochemistry and molecular biology at the “Centro de Biología Molecular Severo Ochoa”.

... more about:
»Glucose »tumour

Their latest research work, recently published in the prestigious journal Cancer Research, describes how the activity or expression of the protein beta-F1-ATPase (responsible for the synthesis of ATP) that controls the aerobic usage of glucose in a cell, shows an inverse correlation between the glycolysis process and the metabolic energy supply of mitochondria.

The study carried out by Dr. Cuezva´s team focused on lung cancer patients. The increase in glucose capture by the tumours was measured using Positron emission tomography (PET), and then contrasted with the expression of protein beta-F1-ATPase, determined from the tumours obtained after surgery, finding an inverse correlation between the two variables.

They also describe in their research work, that when the beta-F1-ATPase protein expression is inhibited or its activity reduced in the carcinomas, the tumour cells are forced to increase their intake of glucose by glycolytic means. Although this research trend is not new, since this same team already has reported in earlier work how the disruption of the mitochondrial bioenergetic function is a metabolic signature of tumours, and how this could be used in clinical prognosis of patients with colorectal, lung or breast cancer. Among other applications that the team and other research groups consider promising are the uses of this signature as a tool to predict the reaction of a patient to a treatment, or as a therapeutic target against cancer.

The commercial applications of such prospective therapies are already protected by a patent that is owned by the “Universidad Autónoma de Madrid” and is licensed to the Spanish biotechnology firm “Fina Biotech, S.L”. Therefore this study might not sound like a new scientific discovery, but it provides the first evidence that integrates molecular and functional data supporting Warburg's hypothesis emphasizing the importance of the mitochondria in human pathology and more specifically in cancer biology.

Oficina de Cultura Científica | alfa
Further information:

Further reports about: Glucose tumour

More articles from Life Sciences:

nachricht First-time reconstruction of infectious bat influenza viruses
25.10.2016 | Universitätsklinikum Freiburg

nachricht The nanostructured cloak of invisibility
25.10.2016 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>