Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 'fault' in the cellular power plant explains the abnormal metabolism of tumours

24.10.2007
The increased consumption of glucose that tumour cells exhibit, was thought to be a cause of the extra demand of building blocks required to keep up with an uncontrolled cell growth, but now it is more accepted that it could be the effect of a programmed metabolic change that favours this malignant growth.

The German Nobel laureate Otto Warburg, one of twentieth century's leading scientists observed that tumour cells exhibit an increased aerobic glucose metabolism in their glycolysis process.

Seeing that, Warburg concluded that cancer should be interpreted as a mitochondrial dysfunction, but his hypothesis was not accepted at the time, and was forgotten by the scientific community until it was recently experimentally confirmed, arousing great interest in biotechnological and pharmaceutical companies.

The comeback of Warburg's hypothesis has been greatly helped by the research of a group of Spanish physicians and scientists from the “12 de octubre” hospital in Madrid (López-Ríos, García-García, Pozo-Rodriguez, López-Encuentra and Ballestín) and from the “Universidad Autónoma de Madrid” (Sanchéz-Aragó, Ortega y Berrendero) under the direction of José Manuel Cuezva, professor of biochemistry and molecular biology at the “Centro de Biología Molecular Severo Ochoa”.

... more about:
»Glucose »tumour

Their latest research work, recently published in the prestigious journal Cancer Research, describes how the activity or expression of the protein beta-F1-ATPase (responsible for the synthesis of ATP) that controls the aerobic usage of glucose in a cell, shows an inverse correlation between the glycolysis process and the metabolic energy supply of mitochondria.

The study carried out by Dr. Cuezva´s team focused on lung cancer patients. The increase in glucose capture by the tumours was measured using Positron emission tomography (PET), and then contrasted with the expression of protein beta-F1-ATPase, determined from the tumours obtained after surgery, finding an inverse correlation between the two variables.

They also describe in their research work, that when the beta-F1-ATPase protein expression is inhibited or its activity reduced in the carcinomas, the tumour cells are forced to increase their intake of glucose by glycolytic means. Although this research trend is not new, since this same team already has reported in earlier work how the disruption of the mitochondrial bioenergetic function is a metabolic signature of tumours, and how this could be used in clinical prognosis of patients with colorectal, lung or breast cancer. Among other applications that the team and other research groups consider promising are the uses of this signature as a tool to predict the reaction of a patient to a treatment, or as a therapeutic target against cancer.

The commercial applications of such prospective therapies are already protected by a patent that is owned by the “Universidad Autónoma de Madrid” and is licensed to the Spanish biotechnology firm “Fina Biotech, S.L”. Therefore this study might not sound like a new scientific discovery, but it provides the first evidence that integrates molecular and functional data supporting Warburg's hypothesis emphasizing the importance of the mitochondria in human pathology and more specifically in cancer biology.

Oficina de Cultura Científica | alfa
Further information:
http://dx.doi.org/10.1158/0008-5472.CAN-07-1678

Further reports about: Glucose tumour

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>