Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can you feel the heat? Your cilia can

23.10.2007
Johns Hopkins researchers and colleagues have found a previously unrecognized role for tiny hair-like cell structures known as cilia: They help form our sense of touch.

Humans and genetically engineered mice lacking functional cilia respond more slowly to physical sensations such as exposure to hot water or a sharp poke with a stick. Results of the study, appearing in Proceedings of the National Academy of Sciences this week, will help doctors better understand diseases already linked to defective cilia like Bardet-Biedl syndrome (BBS) and polycystic kidney disease (PKD)

Cilia, tail-like projections found on the surface of cells, are perhaps best known as molecular flippers that help cells move around. Recently, researchers like Nico Katsanis, Ph.D., associate professor at Johns Hopkins’ McKusick-Nathans Institute of Genetic Medicine, have found that cilia are important for many other biological processes, including three of our five senses: vision, hearing, and smell (ciliopathies are often characterized by loss or deficiency in these senses). “That leaves two unexplored possibilities,” says Katsanis. “Taste and touch; we tried touch.”

In the current study, the research team performed a pair of tests on both normal mice and engineered mice with defective cilia (Bbs -). To test heat sensitivity, they immersed the tails of the mice in warm water and measured how long before the mice flicked their tails. To test mechanical force, the researchers applied increasing (but not painful) pressure to the hind feet of mice until they withdrew their paws.

... more about:
»Bbs- »Katsanis »cilia »heat »sense

In both tests, the response time of the Bbs- mice to these external stimuli was longer. “These mutant mice can still feel the heat and pressure,” explains Katsanis. “They just have a higher threshold for registering the sensation.” Since the Bbs- mice had normal coordination on a spinning rotor, their slower responses likely weren’t due to motor problems.

Norimasa Mitsuma, Ph.D., a postdoctoral student in Katsanis’s lab, also demonstrated that the defective cilia weren’t hindering brain function. He repeatedly dunked one hind paw in hot water for an hour and then carefully measured nerve activity at the base of the spinal cord - the junction between leg and brain. While regular mice displayed clear spinal nerve activity, Bbs- mice did not. This highlighted that the problem with Bbs- mice is that sensory information cannot reach the brain.

To find out whether people with inherited conditions that affect cilia also had different sensation thresholds, the researchers recruited nine patients with BBS, an inherited disorder characterized by obesity, polydactyly and vision loss.

The patients were asked to do seven simple perception tests, such as detecting the vibration of a tuning fork on their wrist or guessing the weight and shape of an object just by feeling it. All nine patients were less able than non-BBS patients to form the right response in at least some of the tests.

“This will certainly aid our efforts to both diagnose ciliopathies and relate to the patients,” says Katsanis. “People with ciliopathies are often thought to have mental retardation or autism because they appear ‘slow’. Now it appears that many aspects of their mental capacity may be just fine, they are just slow because they can’t sense things as well as other individuals.”

Nick Zagorski | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.pnas.org
http://katsanis.igm.jhmi.edu/

Further reports about: Bbs- Katsanis cilia heat sense

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>