Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can you feel the heat? Your cilia can

23.10.2007
Johns Hopkins researchers and colleagues have found a previously unrecognized role for tiny hair-like cell structures known as cilia: They help form our sense of touch.

Humans and genetically engineered mice lacking functional cilia respond more slowly to physical sensations such as exposure to hot water or a sharp poke with a stick. Results of the study, appearing in Proceedings of the National Academy of Sciences this week, will help doctors better understand diseases already linked to defective cilia like Bardet-Biedl syndrome (BBS) and polycystic kidney disease (PKD)

Cilia, tail-like projections found on the surface of cells, are perhaps best known as molecular flippers that help cells move around. Recently, researchers like Nico Katsanis, Ph.D., associate professor at Johns Hopkins’ McKusick-Nathans Institute of Genetic Medicine, have found that cilia are important for many other biological processes, including three of our five senses: vision, hearing, and smell (ciliopathies are often characterized by loss or deficiency in these senses). “That leaves two unexplored possibilities,” says Katsanis. “Taste and touch; we tried touch.”

In the current study, the research team performed a pair of tests on both normal mice and engineered mice with defective cilia (Bbs -). To test heat sensitivity, they immersed the tails of the mice in warm water and measured how long before the mice flicked their tails. To test mechanical force, the researchers applied increasing (but not painful) pressure to the hind feet of mice until they withdrew their paws.

... more about:
»Bbs- »Katsanis »cilia »heat »sense

In both tests, the response time of the Bbs- mice to these external stimuli was longer. “These mutant mice can still feel the heat and pressure,” explains Katsanis. “They just have a higher threshold for registering the sensation.” Since the Bbs- mice had normal coordination on a spinning rotor, their slower responses likely weren’t due to motor problems.

Norimasa Mitsuma, Ph.D., a postdoctoral student in Katsanis’s lab, also demonstrated that the defective cilia weren’t hindering brain function. He repeatedly dunked one hind paw in hot water for an hour and then carefully measured nerve activity at the base of the spinal cord - the junction between leg and brain. While regular mice displayed clear spinal nerve activity, Bbs- mice did not. This highlighted that the problem with Bbs- mice is that sensory information cannot reach the brain.

To find out whether people with inherited conditions that affect cilia also had different sensation thresholds, the researchers recruited nine patients with BBS, an inherited disorder characterized by obesity, polydactyly and vision loss.

The patients were asked to do seven simple perception tests, such as detecting the vibration of a tuning fork on their wrist or guessing the weight and shape of an object just by feeling it. All nine patients were less able than non-BBS patients to form the right response in at least some of the tests.

“This will certainly aid our efforts to both diagnose ciliopathies and relate to the patients,” says Katsanis. “People with ciliopathies are often thought to have mental retardation or autism because they appear ‘slow’. Now it appears that many aspects of their mental capacity may be just fine, they are just slow because they can’t sense things as well as other individuals.”

Nick Zagorski | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.pnas.org
http://katsanis.igm.jhmi.edu/

Further reports about: Bbs- Katsanis cilia heat sense

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>