Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Can you feel the heat? Your cilia can

Johns Hopkins researchers and colleagues have found a previously unrecognized role for tiny hair-like cell structures known as cilia: They help form our sense of touch.

Humans and genetically engineered mice lacking functional cilia respond more slowly to physical sensations such as exposure to hot water or a sharp poke with a stick. Results of the study, appearing in Proceedings of the National Academy of Sciences this week, will help doctors better understand diseases already linked to defective cilia like Bardet-Biedl syndrome (BBS) and polycystic kidney disease (PKD)

Cilia, tail-like projections found on the surface of cells, are perhaps best known as molecular flippers that help cells move around. Recently, researchers like Nico Katsanis, Ph.D., associate professor at Johns Hopkins’ McKusick-Nathans Institute of Genetic Medicine, have found that cilia are important for many other biological processes, including three of our five senses: vision, hearing, and smell (ciliopathies are often characterized by loss or deficiency in these senses). “That leaves two unexplored possibilities,” says Katsanis. “Taste and touch; we tried touch.”

In the current study, the research team performed a pair of tests on both normal mice and engineered mice with defective cilia (Bbs -). To test heat sensitivity, they immersed the tails of the mice in warm water and measured how long before the mice flicked their tails. To test mechanical force, the researchers applied increasing (but not painful) pressure to the hind feet of mice until they withdrew their paws.

... more about:
»Bbs- »Katsanis »cilia »heat »sense

In both tests, the response time of the Bbs- mice to these external stimuli was longer. “These mutant mice can still feel the heat and pressure,” explains Katsanis. “They just have a higher threshold for registering the sensation.” Since the Bbs- mice had normal coordination on a spinning rotor, their slower responses likely weren’t due to motor problems.

Norimasa Mitsuma, Ph.D., a postdoctoral student in Katsanis’s lab, also demonstrated that the defective cilia weren’t hindering brain function. He repeatedly dunked one hind paw in hot water for an hour and then carefully measured nerve activity at the base of the spinal cord - the junction between leg and brain. While regular mice displayed clear spinal nerve activity, Bbs- mice did not. This highlighted that the problem with Bbs- mice is that sensory information cannot reach the brain.

To find out whether people with inherited conditions that affect cilia also had different sensation thresholds, the researchers recruited nine patients with BBS, an inherited disorder characterized by obesity, polydactyly and vision loss.

The patients were asked to do seven simple perception tests, such as detecting the vibration of a tuning fork on their wrist or guessing the weight and shape of an object just by feeling it. All nine patients were less able than non-BBS patients to form the right response in at least some of the tests.

“This will certainly aid our efforts to both diagnose ciliopathies and relate to the patients,” says Katsanis. “People with ciliopathies are often thought to have mental retardation or autism because they appear ‘slow’. Now it appears that many aspects of their mental capacity may be just fine, they are just slow because they can’t sense things as well as other individuals.”

Nick Zagorski | EurekAlert!
Further information:

Further reports about: Bbs- Katsanis cilia heat sense

More articles from Life Sciences:

nachricht How Does Friendly Fire Happen in the Pancreas?
21.10.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>