Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides first evidence of neural link between sleep loss and psychiatric disorders

23.10.2007
It has long been assumed that sleep deprivation can play havoc with our emotions.

This is notably apparent in soldiers in combat zones, medical residents and even new parents. Now there's a neurological basis for this theory, according to new research from the University of California, Berkeley, and Harvard Medical School.

In the first neural investigation into what happens to the emotional brain without sleep, results from a brain imaging study suggest that while a good night's rest can regulate your mood and help you cope with the next day's emotional challenges, sleep deprivation does the opposite by excessively boosting the part of the brain most closely connected to depression, anxiety and other psychiatric disorders.

"It's almost as though, without sleep, the brain had reverted back to more primitive patterns of activity, in that it was unable to put emotional experiences into context and produce controlled, appropriate responses," said Matthew Walker, director of UC Berkeley's Sleep and Neuroimaging Laboratory and senior author of the study, which will be published Oct. 22 in the journal Current Biology.

... more about:
»Amygdala »Day »Deprivation »Emotional »evidence »night

"Emotionally, you're not on a level playing field," Walker added.

That's because the amygdala, the region of the brain that alerts the body to protect itself in times of danger, goes into overdrive on no sleep, according to the study. This consequently shuts down the prefrontal cortex, which commands logical reasoning, and thus prevents the release of chemicals needed to calm down the fight-or-flight reflex.

If, for example, the amygdala reacts strongly to a violent movie, the prefrontal cortex lets the brain know that the scene is make-believe and to settle down. But instead of connecting to the prefrontal cortex, the brain on no sleep connects to the locus coeruleus, the oldest part of the brain which releases noradrenalin to ward off imminent threats to survival, posing a volatile mix, according to the study.

The study's findings lay the groundwork for further investigation into the relationship between sleep and psychiatric illnesses. Clinical evidence has shown that some form of sleep disruption is present in almost all psychiatric disorders.

"This is the first set of experiments that demonstrate that even healthy people's brains mimic certain pathological psychiatric patterns when deprived of sleep," Walker said. "Before, it was difficult to separate out the effect of sleep versus the disease itself. Now we're closer to being able to look into whether the person has a psychiatric disease or a sleep disorder."

Using functioning Magnetic Resonance Imaging (fMRI), Walker and his team found that the amygdala, which is also a key to processing emotions, became hyperactive in response to negative visual stimuli - mutilated bodies, children with tumors and other gory images - in study participants who stayed awake for 35 hours straight. Conversely, brain scans of those who got a full night's sleep in their own beds showed normal activity in the amygdala.

"The emotional centers of the brain were over 60 percent more reactive under conditions of sleep deprivation than in subjects who had obtained a normal night of sleep," Walker said.

The team studied 26 healthy participants aged 18 to 30, breaking them into two groups of equal numbers of males and females. The sleep-deprived group stayed awake during day 1, night 1 and day 2, while the sleep-control group stayed awake both days and slept normally during the night. During the fMRI brain scanning, which was performed at the end of day 2, each was shown 100 images that ranged from neutral to very negative. Using this emotional gradient, the researchers were able to compare the increase in brain response to the increasingly negative pictures.

Since 1998, Walker, an assistant professor of psychology at UC Berkeley and a former sleep researcher at Harvard Medical School, has been studying sleep's impact on memory, learning and brain plasticity.

During his research, he was struck with the consistency of how graduate students in his studies would turn from affable, rational beings into what he called "emotional JELL-O" after a night without sleep. He and his assistants searched for research that would explain the effect of sleep deprivation on the emotional brain and found none, although there is countless anecdotal evidence that lack of sleep causes emotional swings.

"You can see it in the reaction of a military combatant soldier dealing with a civilian, a tired mother to a meddlesome toddler, the medical resident to a pushy patient. It's these everyday scenarios that tell us people don't get enough sleep." Walker said.

The body alternates between two different phases of sleep during the night: Rapid Eye Movement (REM), when body and brain activity promote dreams, and Non-Rapid Eye Movement (NREM), when the muscles and brain rest.

"All signs point to sleep doing something for emotional regulation and emotional processing," Walker said. "My job now is to figure out what kind of sleep."

Yasmin Anwar | EurekAlert!
Further information:
http://www.berkeley.edu

Further reports about: Amygdala Day Deprivation Emotional evidence night

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>