Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transparent zebrafish help researchers track breast cancer

23.10.2007
What if doctors could peer through a patient’s skin and see a cancer tumor growing? They’d be able to study how tumor cells migrate: how they look, how they interact with the blood system to find nourishment to grow and spread through the body.

Scientists at the University of California, San Diego (UCSD) School of Medicine can’t look through human skin. But a small, tropical minnow fish common to aquariums has given UCSD researchers a window for viewing live, human cancer cells in action. Working with transparent zebrafish to study one of the most aggressive forms of cancer, inflammatory breast cancer, has led to their discovery of how two proteins interact in the metastasis of breast cancer. The study led by Richard Klemke, Ph.D., professor of pathology at UCSD School of Medicine and the UCSD Moores Cancer Center, will be published in the Proceedings of the National Academy of Science online edition the week of October 22-26.

“By watching human breast cancer cells in real time in the live transgenic zebrafish, we were able to determine that two proteins are required in order for breast tumor cells to complete the most critical step of metastasis – entering the blood vessels,” said Konstantin Stoletov, Ph.D., of the department of pathology at the UC-San Diego School of Medicine, first author of the paper.

The scientists discovered that two proteins work together to allow cancerous breast tumors to enter the blood vessels, thus promoting metastasis. The first is vascular endothelial growth factor (VEGF), a protein made by cancerous cells that stimulates new blood vessel formation, or angiogenesis. The second is a small protein called RhoC that is involved in cell movement or migration, and is overexpressed in highly metastatic forms of breast cancer.

The researchers found that neither VEGF nor RhoC alone interact with blood vessels to allow the cancerous tumor to enter the blood vessels, or intravasate. “But together, they promote rapid intravasation,” said Stoletov.

Inflammatory breast cancer (IBC) is the deadliest form of human breast cancer, with fewer than half of those diagnosed today expected to live five years. The UCSD team developed an immuno-suppressed zebrafish that expresses green fluorescent protein (commonly known as GFP) only in its blood vessels, allowing scientists to view the tumor-induced blood vessel formation, or angiogenesis. They injected the fish with IBC cells that were tagged in different colors, in order to study the very rapid tumor progression.

The parental cancer cells were tagged in blue, and the migrating cells that overexpressed RhoC in red. Over several weeks, the researchers were able to watch the cancer’s progression using high-resolution, multi-color confocal microscopy.

The scientists discovered that RhoC induces an amoeboid-like mode of invasion, in which the cancerous cells move by means of temporary projections or ‘false feet.’ They also found that secretion of VEGF was required in order for the cancer cells to penetrate and enter the blood vessel.

“In later stages of the cancerous tumor, the VEGF induces rapid formation of irregular, leaky blood vessels,” said Stoletov. “We discovered that intravasation requires the secretion of VEGF, which disrupts the blood vessel wall, creating small openings that allow the tumor cells to penetrate and enter.”

Finding a way to suppress VEGF, thus inhibiting the growth of “leaky” blood vessels, could stop the movement of cancer cells into the blood vessels and the tumor’s subsequent metastasis, according to Klemke.

The results provide novel insight into mechanisms of cancer-cell invasion and intravasation, showing how RhoC and VEGF cooperate to facilitate cell metastasis in living tissues. The transparency of the fish also allowed the researchers to image and analyze, in three dimensions, images of a potential anti-cancer compound that inhibits the VEGF compound. They found that this inhibitor prevents formation of the vascular openings, thus inhibiting intravasation.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Researchers RhoC UCSD VEGF blood vessel breast cancerous formation intravasation metastasis vessel

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>