A new explanation for evolutionary changes in genetic sex-determination systems

A research team formed by Sander van Doorn (Santa Fe Institute, USA) and Mark Kirkpatrick (University of Texas at Austin, USA) suggests an answer to the puzzle of why sex chromosomes evolve so rapidly. In a theoretical study published in the October 17, 2007 issue of NATURE they demonstrate that sexual conflict can establish novel sex-determining genes and sex chromosomes. The proposed mechanism extends the established theory on the origin of sex chromosomes, and it explains how sex determination can move from an ancestral sex chromosome to an autosome, a non-sex-chromosome, that then invades to become a new sex chromosome.

The mechanism suggested by these authors begins with an autosome that carries two genes with particular features. One of these two genes is under sexually antagonistic selection. This means that some versions of the gene (alleles) are more beneficial in males than in females, while other alleles are more beneficial for females. The other gene influences the sex of the individual. Natural selection produces an association between the two genes – an allele that is most beneficial in males will occur most often with the allele of the other gene that makes the individual male. It is then possible that this new male-making, male-benefiting (or female-making, female-benefiting) combination of genes spreads through the population, eventually replacing the old pair of sex chromosomes.

Genes with sexually antagonistic fitness effects and mutations that influence sex determination appear to be common in nature, but how would we know if the model presented here actually caused a change in the sex-determination mechanism in a particular species” One possible test would look at sexually antagonistic genes on a chromosome immediately before and after that chromosome took over the role of sex determination. This might be possible by comparing closely related species with different sex chromosomes. One species would have a very young set of sex chromosomes, while the other would still use the old sex chromosomes, and might approximate the state of the chromosome right before the switch.

Media Contact

G.S. van Doorn EurekAlert!

More Information:

http://www.santafe.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors