Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new explanation for evolutionary changes in genetic sex-determination systems

23.10.2007
In animals with separate sexes, embryos commit to becoming male or female at an early stage. Often this key decision is made by sex determination genes on the sex chromosomes. The genes involved in sexual development have changed remarkably little during evolution. In contrast, the sex determination genes and the sex chromosomes themselves are among the most rapidly changing features of the genome.

A research team formed by Sander van Doorn (Santa Fe Institute, USA) and Mark Kirkpatrick (University of Texas at Austin, USA) suggests an answer to the puzzle of why sex chromosomes evolve so rapidly. In a theoretical study published in the October 17, 2007 issue of NATURE they demonstrate that sexual conflict can establish novel sex-determining genes and sex chromosomes. The proposed mechanism extends the established theory on the origin of sex chromosomes, and it explains how sex determination can move from an ancestral sex chromosome to an autosome, a non-sex-chromosome, that then invades to become a new sex chromosome.

The mechanism suggested by these authors begins with an autosome that carries two genes with particular features. One of these two genes is under sexually antagonistic selection. This means that some versions of the gene (alleles) are more beneficial in males than in females, while other alleles are more beneficial for females. The other gene influences the sex of the individual. Natural selection produces an association between the two genes – an allele that is most beneficial in males will occur most often with the allele of the other gene that makes the individual male. It is then possible that this new male-making, male-benefiting (or female-making, female-benefiting) combination of genes spreads through the population, eventually replacing the old pair of sex chromosomes.

Genes with sexually antagonistic fitness effects and mutations that influence sex determination appear to be common in nature, but how would we know if the model presented here actually caused a change in the sex-determination mechanism in a particular species" One possible test would look at sexually antagonistic genes on a chromosome immediately before and after that chromosome took over the role of sex determination. This might be possible by comparing closely related species with different sex chromosomes. One species would have a very young set of sex chromosomes, while the other would still use the old sex chromosomes, and might approximate the state of the chromosome right before the switch.

G.S. van Doorn | EurekAlert!
Further information:
http://www.santafe.edu

Further reports about: Chromosome determination male

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>