Naresh S. Dalal, the Dirac Professor of Chemistry and Biochemistry at FSU, recently collaborated with three colleagues, Jorge Lasave, Sergio Koval and Ricardo Migoni, all of the Universidad Nacional de Rosario in Argentina, to determine why a certain type of crystal known as ammonium dihydrogen phosphate, or ADP, behaves the way it does.
“ADP was discovered in 1938,” Dalal said. “It was observed to have some unusual electrical properties that weren’t fully understood -- and for nearly 70 years, scientists have been perplexed by these properties. Using the supercomputer at SCRI (FSU’s Supercomputer Computations Research Institute), we were able to perform in-depth computational analyses that explained for the very first time what causes ADP to have these unusual properties.”
ADP, like many crystals, exhibits an electrical phenomenon known as ferroelectricity. Ferroelectric materials are analogous to magnets in that they maintain a positively charged and a negatively charged pole below a certain temperature that is characteristic for each compound.
“Ferroelectric materials can stay in a given state of charge for a long time -- they retain their charge after the external electrical source is removed,” Dalal said. “This has made ADP and other materials like it very useful for storing and transmitting data.
ADP is commonly used in computer memory devices, fiber optic technology, lasers and other electro-optic applications.”
What researchers found perplexing about ADP was that it often displays a very different electrical phase -- one known as antiferroelectricity.
“With antiferroelectricity, one layer of molecules in a crystal has a plus and a minus pole, but in the next layer, the charges are reversed,” Dalal said. “You see this reversal of charges, layer by layer, throughout the crystal.”
Using the supercomputer at SCRI enabled Dalal and his colleagues to perform numerous highly complex calculations that couldn’t be duplicated in a laboratory environment. For example, they were able to theoretically alter the angles of ADP’s ammonium ions and then measure the effects on the crystal’s electrical charge. That approach ultimately led to their solution to the seven-decade mystery.
“We found that the position of the ammonium ions in the compound, as well as the presence of stresses or defects in the crystal, determine whether it behaves in a ferroelectric or antiferroelectric manner,” Dalal said.
The team’s research is important for two main reasons, Dalal said: “First, this allows us to further understand how to design new materials with both ferroelectric and antiferroelectric properties. Doing so could open new doors for computer memory technology -- and possibly play a role in the development of quantum computers.
“Second, our research opens up new ways of testing materials,” Dalal said. “Using supercomputers, we can quickly perform tests to see how materials would react under a variety of conditions. Many such tests can’t even be performed in the lab.”
Naresh S. Dalal | EurekAlert!
Further information:
http://www.chem.fsu.edu
Further reports about: > ADP > Electrical > chemist > properties
Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology
Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Quantum Technology for Advanced Imaging – QUILT
24.04.2018 | Information Technology
AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Earth Sciences
Complete skin regeneration system of fish unraveled
24.04.2018 | Life Sciences