Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The solution to a 7-decade mystery is crystal-clear to FSU chemist

22.10.2007
A Florida State University researcher has helped solve a scientific mystery that stumped chemists for nearly seven decades. In so doing, his team’s findings may lead to the development of more-powerful computer memories and lasers.

Naresh S. Dalal, the Dirac Professor of Chemistry and Biochemistry at FSU, recently collaborated with three colleagues, Jorge Lasave, Sergio Koval and Ricardo Migoni, all of the Universidad Nacional de Rosario in Argentina, to determine why a certain type of crystal known as ammonium dihydrogen phosphate, or ADP, behaves the way it does.

“ADP was discovered in 1938,” Dalal said. “It was observed to have some unusual electrical properties that weren’t fully understood -- and for nearly 70 years, scientists have been perplexed by these properties. Using the supercomputer at SCRI (FSU’s Supercomputer Computations Research Institute), we were able to perform in-depth computational analyses that explained for the very first time what causes ADP to have these unusual properties.”

ADP, like many crystals, exhibits an electrical phenomenon known as ferroelectricity. Ferroelectric materials are analogous to magnets in that they maintain a positively charged and a negatively charged pole below a certain temperature that is characteristic for each compound.

... more about:
»ADP »Electrical »chemist »properties

“Ferroelectric materials can stay in a given state of charge for a long time -- they retain their charge after the external electrical source is removed,” Dalal said. “This has made ADP and other materials like it very useful for storing and transmitting data.

ADP is commonly used in computer memory devices, fiber optic technology, lasers and other electro-optic applications.”

What researchers found perplexing about ADP was that it often displays a very different electrical phase -- one known as antiferroelectricity.

“With antiferroelectricity, one layer of molecules in a crystal has a plus and a minus pole, but in the next layer, the charges are reversed,” Dalal said. “You see this reversal of charges, layer by layer, throughout the crystal.”

Using the supercomputer at SCRI enabled Dalal and his colleagues to perform numerous highly complex calculations that couldn’t be duplicated in a laboratory environment. For example, they were able to theoretically alter the angles of ADP’s ammonium ions and then measure the effects on the crystal’s electrical charge. That approach ultimately led to their solution to the seven-decade mystery.

“We found that the position of the ammonium ions in the compound, as well as the presence of stresses or defects in the crystal, determine whether it behaves in a ferroelectric or antiferroelectric manner,” Dalal said.

The team’s research is important for two main reasons, Dalal said: “First, this allows us to further understand how to design new materials with both ferroelectric and antiferroelectric properties. Doing so could open new doors for computer memory technology -- and possibly play a role in the development of quantum computers.

“Second, our research opens up new ways of testing materials,” Dalal said. “Using supercomputers, we can quickly perform tests to see how materials would react under a variety of conditions. Many such tests can’t even be performed in the lab.”

Naresh S. Dalal | EurekAlert!
Further information:
http://www.chem.fsu.edu

Further reports about: ADP Electrical chemist properties

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>