Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive reanalysis of genome data solves case of the lethal genes

22.10.2007
Highlights avenue for new antibiotic discovery

It is better to be looked over than overlooked, Mae West supposedly said. These are words of wisdom for genome data-miners of today. Data that goes unnoticed, despite its widespread availability, can reveal extraordinary insights to the discerning eye.

Such is the case of a systematic analysis by the U.S. Department of Energy Joint Genome Institute (DOE JGI) of the massive backlog of microbial genome sequences from the public databases. The survey identified genes that kill the bacteria employed in the sequencing process and throw a microbial wrench in the works. It also offers a possible strategy for the discovery of new antibiotics. These findings are published in the Oct. 19 edition of the journal Science.

In nature, promiscuous microbes share genetic information so readily that using genes to infer their species position on the evolutionary tree of life was thought to be futile. Now, researchers at DOE JGI have characterized barriers to this gene transfer by identifying genes that kill the recipient bacterium upon transfer, regardless of the type of bacterial donor. These lethal genes also provide better reference points for building phylogenic trees -- the means to verify evolutionary relationships between organisms.

... more about:
»Coli »DNA »DOE »E. coli »JGI »antibiotic »sequence

"At DOE JGI, we are responsible for producing and making publicly available genomes from hundreds of different microbes, most of which are relevant to advancing the frontiers of bioenergy, carbon cycling, and bioremediation," said Eddy Rubin, DOE JGI Director. "We realized that sequencing a genome is like conducting a massive experiment in gene transfer. By checking which genes could not be sequenced, we discovered barriers to transfer."

The industrial-scale "shotgun" DNA sequencing strategy typically involves sheering the organism's DNA into manageable fragments, and then inserting these fragments into a disarmed strain of E. coli, which is used as an enrichment culture -- to grow up vast amounts of the target DNA. The team led by Rubin showed that this sequencing process mimics the transmission of DNA from one organism to another, a mechanism called horizontal gene transfer. This phenomenon occurs in nature, allowing one organism to acquire and use genes from other organisms. While this is an extremely rare event in animals, it does occur frequently in microorganisms and is one of the main sources for the rapid spread of antibiotic resistance among bacteria.

"When you sequence a genome, you never get the whole genome reconstructed in one pass," said Rubin. "You always get gaps in the assembly. This is annoying, expensive, and compels us to close the gaps and finish the puzzle so that we could tell the story behind the sequence. Our breakthrough was in understanding that gaps occur because some genes cannot be transferred to E. coli -- because they are lethal."

So Rubin and his colleagues sifted through more than nine billion nucleotides to assess gaps in 80 different genomes. They found that the same genes, over and over again, caused these gaps, meaning that they could not be transferred into the E. coli.

"We use the bits that people usually throw away, the gaps of information keeping us from finishing an assembly," Rubin said. "We identified a set of genes that, if you add another copy or you tweak its expression, the host dies.

"The genes we categorized, while providing us a lesson in the evolutionary history of the organism, now suggest a short-cut for finishing genomes," Rubin said. "In addition, it offers a new strategy for screening molecules that may represent the next generation of broad-spectrum antibiotics. We expect that many organisms, not just E. coli, are susceptible to being killed if they take up certain genes that are over-expressed. We have strong evidence that most microbes behave like that."

David Gilbert | EurekAlert!
Further information:
http://www.jgi.doe.gov/

Further reports about: Coli DNA DOE E. coli JGI antibiotic sequence

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>