Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive reanalysis of genome data solves case of the lethal genes

22.10.2007
Highlights avenue for new antibiotic discovery

It is better to be looked over than overlooked, Mae West supposedly said. These are words of wisdom for genome data-miners of today. Data that goes unnoticed, despite its widespread availability, can reveal extraordinary insights to the discerning eye.

Such is the case of a systematic analysis by the U.S. Department of Energy Joint Genome Institute (DOE JGI) of the massive backlog of microbial genome sequences from the public databases. The survey identified genes that kill the bacteria employed in the sequencing process and throw a microbial wrench in the works. It also offers a possible strategy for the discovery of new antibiotics. These findings are published in the Oct. 19 edition of the journal Science.

In nature, promiscuous microbes share genetic information so readily that using genes to infer their species position on the evolutionary tree of life was thought to be futile. Now, researchers at DOE JGI have characterized barriers to this gene transfer by identifying genes that kill the recipient bacterium upon transfer, regardless of the type of bacterial donor. These lethal genes also provide better reference points for building phylogenic trees -- the means to verify evolutionary relationships between organisms.

... more about:
»Coli »DNA »DOE »E. coli »JGI »antibiotic »sequence

"At DOE JGI, we are responsible for producing and making publicly available genomes from hundreds of different microbes, most of which are relevant to advancing the frontiers of bioenergy, carbon cycling, and bioremediation," said Eddy Rubin, DOE JGI Director. "We realized that sequencing a genome is like conducting a massive experiment in gene transfer. By checking which genes could not be sequenced, we discovered barriers to transfer."

The industrial-scale "shotgun" DNA sequencing strategy typically involves sheering the organism's DNA into manageable fragments, and then inserting these fragments into a disarmed strain of E. coli, which is used as an enrichment culture -- to grow up vast amounts of the target DNA. The team led by Rubin showed that this sequencing process mimics the transmission of DNA from one organism to another, a mechanism called horizontal gene transfer. This phenomenon occurs in nature, allowing one organism to acquire and use genes from other organisms. While this is an extremely rare event in animals, it does occur frequently in microorganisms and is one of the main sources for the rapid spread of antibiotic resistance among bacteria.

"When you sequence a genome, you never get the whole genome reconstructed in one pass," said Rubin. "You always get gaps in the assembly. This is annoying, expensive, and compels us to close the gaps and finish the puzzle so that we could tell the story behind the sequence. Our breakthrough was in understanding that gaps occur because some genes cannot be transferred to E. coli -- because they are lethal."

So Rubin and his colleagues sifted through more than nine billion nucleotides to assess gaps in 80 different genomes. They found that the same genes, over and over again, caused these gaps, meaning that they could not be transferred into the E. coli.

"We use the bits that people usually throw away, the gaps of information keeping us from finishing an assembly," Rubin said. "We identified a set of genes that, if you add another copy or you tweak its expression, the host dies.

"The genes we categorized, while providing us a lesson in the evolutionary history of the organism, now suggest a short-cut for finishing genomes," Rubin said. "In addition, it offers a new strategy for screening molecules that may represent the next generation of broad-spectrum antibiotics. We expect that many organisms, not just E. coli, are susceptible to being killed if they take up certain genes that are over-expressed. We have strong evidence that most microbes behave like that."

David Gilbert | EurekAlert!
Further information:
http://www.jgi.doe.gov/

Further reports about: Coli DNA DOE E. coli JGI antibiotic sequence

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>