Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Nile virus' spread through nerve cells linked to serious complication

22.10.2007
Scientists believe they have found an explanation for a puzzling and serious complication of West Nile virus infection.

Researchers at Washington University School of Medicine in St. Louis and Utah State University showed that West Nile virus can enter a nerve cell, replicate and move on to infect other nearby nerve cells. Viruses traveling this infectious pathway can break into the central nervous system, triggering a condition known as acute flaccid paralysis that leaves one or more limbs limp and unresponsive. No treatment is currently available for this complication. Patients must undergo rehabilitation to relearn to use the affected limb.

Injection of a West Nile virus antibody, created by Washington University and a private biotechnology firm, blocked the complication in laboratory animals. The results appear online in the Proceedings of the National Academy of Sciences.

Preliminary data suggests there will be approximately 4,000 to 5,000 severe West Nile virus infections in the United States in 2007. First isolated in Africa in 1937, West Nile spread to the Middle East, Europe, and Asia before arriving in the United States in 1999. Most infections with the virus are mild or symptom-free, but infections in people with weakened immune systems and those over 50 sometimes lead to serious complications or death.

Senior author Michael Diamond, M.D., Ph.D., associate professor of molecular microbiology, of pathology and immunology and of medicine, began the new study because of a puzzling contrast in the ways West Nile virus infection affects the central nervous system.

One form of infection, encephalitis, causes inflammation of the brain and leads to fever, headaches, weakness and seizures. It is much more likely to occur in patients who are elderly or have weakened or suppressed immune systems. The other form of infection, acute flaccid paralysis, strikes patients with weakened immune systems but also affects a significant number of patients with healthy immune systems.

"Based on our mouse model of West Nile virus infection, we already knew that the most likely cause of encephalitis was virus in the blood breaking through the blood-brain barrier to infect the brain," says Diamond. "But the epidemiological contrast suggested to us that there might be a fundamentally different infectious mechanism behind paralysis."

In experiments led by Melanie Samuel, a graduate student in Diamond's lab, researchers found that West Nile virus could spread in either direction along the branches of neurons in culture. Samuel used an electron microscope to observe the virus traveling down nerve branches in small capsules known as vesicles. Researchers also found infected nerve cells released virus.

To test their results in an animal model, scientists used a suture to close off the sciatic nerve in hamsters. Then they injected West Nile virus directly into the nerve, either above the suture (i.e., closer to the spine) or below it. Animals who received an injection below the suture came down with encephalitis. But those whose injections were above the suture developed both encephalitis and paralysis because the virus was able to follow the sciatic nerve back to the central nervous system.

An untreated human patient's chances of developing flaccid paralysis from West Nile may come down to a roll of the dice, Diamond speculates. To break through the blood-brain barrier and cause encephalitis, high levels of the virus have to build up in the blood. In the elderly or patients with weakened immune systems, West Nile is able to replicate relatively freely in areas like the skin and lymph tissues, providing additional copies of the virus that build up in the blood.

"Paralysis might not require such high levels of infection," he theorizes. "What may happen instead is if a mosquito bites you and the virus is able to replicate in the vicinity of a nerve, by the time the immune system has cleared the infection in the skin, a small amount of virus may already be following the nerve back to the spinal cord. Unless you have a robust antibody response, you're probably not going to clear that fast enough, and you might get paralysis."

When scientists injected a therapeutic antibody the day after the viral injection, it blocked both encephalitis and paralysis. The antibody, developed by Washington University and Macrogenics Inc., has been licensed to Macrogenics for commercial development and is in early clinical trials in humans.

"We already knew the antibody could block encephalitis," notes Diamond, in whose laboratory the antibody was originally developed. "The levels of antibody in the central nervous system are relatively low compared to the rest of the body, but they're still high enough to block paralysis."

Diamond plans follow-up studies to see how long after infection the antibodies can be injected and still retain their protective effect against paralysis. He also plans to test whether the virus is sitting back and passively letting the nerve cell move it along or actively pushing itself forward by manipulating nerve cell physiology.

Diamond and co-author John D. Morrey have a financial interest in the antibody that is regulated in accordance with Washington University's conflict-of-interest policies.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>