Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


West Nile virus' spread through nerve cells linked to serious complication

Scientists believe they have found an explanation for a puzzling and serious complication of West Nile virus infection.

Researchers at Washington University School of Medicine in St. Louis and Utah State University showed that West Nile virus can enter a nerve cell, replicate and move on to infect other nearby nerve cells. Viruses traveling this infectious pathway can break into the central nervous system, triggering a condition known as acute flaccid paralysis that leaves one or more limbs limp and unresponsive. No treatment is currently available for this complication. Patients must undergo rehabilitation to relearn to use the affected limb.

Injection of a West Nile virus antibody, created by Washington University and a private biotechnology firm, blocked the complication in laboratory animals. The results appear online in the Proceedings of the National Academy of Sciences.

Preliminary data suggests there will be approximately 4,000 to 5,000 severe West Nile virus infections in the United States in 2007. First isolated in Africa in 1937, West Nile spread to the Middle East, Europe, and Asia before arriving in the United States in 1999. Most infections with the virus are mild or symptom-free, but infections in people with weakened immune systems and those over 50 sometimes lead to serious complications or death.

Senior author Michael Diamond, M.D., Ph.D., associate professor of molecular microbiology, of pathology and immunology and of medicine, began the new study because of a puzzling contrast in the ways West Nile virus infection affects the central nervous system.

One form of infection, encephalitis, causes inflammation of the brain and leads to fever, headaches, weakness and seizures. It is much more likely to occur in patients who are elderly or have weakened or suppressed immune systems. The other form of infection, acute flaccid paralysis, strikes patients with weakened immune systems but also affects a significant number of patients with healthy immune systems.

"Based on our mouse model of West Nile virus infection, we already knew that the most likely cause of encephalitis was virus in the blood breaking through the blood-brain barrier to infect the brain," says Diamond. "But the epidemiological contrast suggested to us that there might be a fundamentally different infectious mechanism behind paralysis."

In experiments led by Melanie Samuel, a graduate student in Diamond's lab, researchers found that West Nile virus could spread in either direction along the branches of neurons in culture. Samuel used an electron microscope to observe the virus traveling down nerve branches in small capsules known as vesicles. Researchers also found infected nerve cells released virus.

To test their results in an animal model, scientists used a suture to close off the sciatic nerve in hamsters. Then they injected West Nile virus directly into the nerve, either above the suture (i.e., closer to the spine) or below it. Animals who received an injection below the suture came down with encephalitis. But those whose injections were above the suture developed both encephalitis and paralysis because the virus was able to follow the sciatic nerve back to the central nervous system.

An untreated human patient's chances of developing flaccid paralysis from West Nile may come down to a roll of the dice, Diamond speculates. To break through the blood-brain barrier and cause encephalitis, high levels of the virus have to build up in the blood. In the elderly or patients with weakened immune systems, West Nile is able to replicate relatively freely in areas like the skin and lymph tissues, providing additional copies of the virus that build up in the blood.

"Paralysis might not require such high levels of infection," he theorizes. "What may happen instead is if a mosquito bites you and the virus is able to replicate in the vicinity of a nerve, by the time the immune system has cleared the infection in the skin, a small amount of virus may already be following the nerve back to the spinal cord. Unless you have a robust antibody response, you're probably not going to clear that fast enough, and you might get paralysis."

When scientists injected a therapeutic antibody the day after the viral injection, it blocked both encephalitis and paralysis. The antibody, developed by Washington University and Macrogenics Inc., has been licensed to Macrogenics for commercial development and is in early clinical trials in humans.

"We already knew the antibody could block encephalitis," notes Diamond, in whose laboratory the antibody was originally developed. "The levels of antibody in the central nervous system are relatively low compared to the rest of the body, but they're still high enough to block paralysis."

Diamond plans follow-up studies to see how long after infection the antibodies can be injected and still retain their protective effect against paralysis. He also plans to test whether the virus is sitting back and passively letting the nerve cell move it along or actively pushing itself forward by manipulating nerve cell physiology.

Diamond and co-author John D. Morrey have a financial interest in the antibody that is regulated in accordance with Washington University's conflict-of-interest policies.

Michael C. Purdy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>