Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers biomaterial debuts in clinical trials of new stent

22.10.2007
A revolutionary, new biomaterial, developed at the New Jersey Center for Biomaterials (NJCBM) at Rutgers University, has moved from the lab bench to field testing in record time. This achievement, a product of a breakthrough methodology in biomaterials discovery, is the enabling technology behind a coronary stent undergoing its first-in-human clinical trial in Germany and in Brazil.

Stents are tiny tubes inserted into diseased arteries to keep them open. The stent being tested, designed by REVA Medical Inc. of San Diego, is intended to act as a temporary scaffold to support the blood vessel during the healing process and maintain blood flow. It subsequently dissolves, leaving the patient free of any permanent implant.

Rutgers’ Joachim Kohn is reporting on his new combinatorial biomaterials discovery process and the promise it holds for the medical device industry during TCT 2007 (Transcatheter Cardiovascular Therapeutics), the world's premier conference on interventional cardiology, which begins Saturday, Oct. 20 in Washington, D.C. Also reporting at the conference, Dr. Eberhard Grube of the HELIOS Heart Center in Germany describes the initial clinical experience from the RESORB trial that is evaluating the stent’s safety in approximately 30 patients at multiple sites in Germany and Brazil.

Fully degradable coronary stents have been explored for more than 20 years. But, according to Kohn, no clinically useful products could be developed, in part, because of the lack of polymers that could meet the extremely demanding performance requirements. Kohn and his team addressed this problem by developing a library of degradable polymers comprising 10,000 theoretically possible compositions and applying combinatorial methods to identify the best possible biomaterial. The resulting material was selected for use in combination with REVA’s novel stent design.

... more about:
»Biomaterial »Design »Kohn’s »Polymer »Stent

“We’ve applied novel design and advanced biomaterials solutions to create a significant advance in stent technology,” said Dr. Robert Schultz, REVA’s president. “This approach has allowed for us to bring it to the clinical stage quickly.”

“Our unconventional discovery process integrates combinatorial polymer libraries, high-throughput testing and computational modeling. This results in a much faster path to prototype development and a reduction in the cost and risk associated with the use of new, proprietary biomaterials,” said Kohn, a Board of Governors Professor who directs the New Jersey Center for Biomaterials at Rutgers.

Michael J. Pazzani, vice president for research and graduate and professional education at Rutgers, spoke of the impact of Kohn’s work on the medical device industry. In addition to REVA, Rutgers has licensed the portfolio of Kohn’s patents to several other companies. “One licensee was able to obtain FDA clearance for a new hernia repair device using one of Kohn’s polymers on a three-year track from concept to FDA market clearance,” Pazzani said. “Another is working with Kohn's combinatorial discovery process to identify an ideal polymer for their ophthalmic drug delivery device.”

The significance of Kohn’s work is related to its general applicability to many different biomaterials design challenges as evidenced by the diversity of products being commercialized using this discovery process.

The scientific foundations of the new biomaterials discovery process are being developed with support to the New Jersey Center for Biomaterials and the Kohn Laboratory from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health.

In collaboration with REVA, Kohn and his colleagues developed a polymer that is exceptionally strong and highly suitable for stent applications. In addition, the material was designed to be radio-opaque so it is X-ray visible, a property critical to the proper placement of the stent in the artery. It is also biodegradable and biocompatible.

Pazzani said that reaching the clinical trial stage is an accomplishment for the university and a great source of pride. “This is a major achievement for our state, a success story for our Office of Corporate Liaison and Technology Transfer,” he said, and, Pazzani added, “it is significant validation for the work of Rutgers scientists.”

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Biomaterial Design Kohn’s Polymer Stent

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Molecular switch will facilitate the development of pioneering electro-optical devices

24.05.2018 | Power and Electrical Engineering

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>