Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rutgers biomaterial debuts in clinical trials of new stent

A revolutionary, new biomaterial, developed at the New Jersey Center for Biomaterials (NJCBM) at Rutgers University, has moved from the lab bench to field testing in record time. This achievement, a product of a breakthrough methodology in biomaterials discovery, is the enabling technology behind a coronary stent undergoing its first-in-human clinical trial in Germany and in Brazil.

Stents are tiny tubes inserted into diseased arteries to keep them open. The stent being tested, designed by REVA Medical Inc. of San Diego, is intended to act as a temporary scaffold to support the blood vessel during the healing process and maintain blood flow. It subsequently dissolves, leaving the patient free of any permanent implant.

Rutgers’ Joachim Kohn is reporting on his new combinatorial biomaterials discovery process and the promise it holds for the medical device industry during TCT 2007 (Transcatheter Cardiovascular Therapeutics), the world's premier conference on interventional cardiology, which begins Saturday, Oct. 20 in Washington, D.C. Also reporting at the conference, Dr. Eberhard Grube of the HELIOS Heart Center in Germany describes the initial clinical experience from the RESORB trial that is evaluating the stent’s safety in approximately 30 patients at multiple sites in Germany and Brazil.

Fully degradable coronary stents have been explored for more than 20 years. But, according to Kohn, no clinically useful products could be developed, in part, because of the lack of polymers that could meet the extremely demanding performance requirements. Kohn and his team addressed this problem by developing a library of degradable polymers comprising 10,000 theoretically possible compositions and applying combinatorial methods to identify the best possible biomaterial. The resulting material was selected for use in combination with REVA’s novel stent design.

... more about:
»Biomaterial »Design »Kohn’s »Polymer »Stent

“We’ve applied novel design and advanced biomaterials solutions to create a significant advance in stent technology,” said Dr. Robert Schultz, REVA’s president. “This approach has allowed for us to bring it to the clinical stage quickly.”

“Our unconventional discovery process integrates combinatorial polymer libraries, high-throughput testing and computational modeling. This results in a much faster path to prototype development and a reduction in the cost and risk associated with the use of new, proprietary biomaterials,” said Kohn, a Board of Governors Professor who directs the New Jersey Center for Biomaterials at Rutgers.

Michael J. Pazzani, vice president for research and graduate and professional education at Rutgers, spoke of the impact of Kohn’s work on the medical device industry. In addition to REVA, Rutgers has licensed the portfolio of Kohn’s patents to several other companies. “One licensee was able to obtain FDA clearance for a new hernia repair device using one of Kohn’s polymers on a three-year track from concept to FDA market clearance,” Pazzani said. “Another is working with Kohn's combinatorial discovery process to identify an ideal polymer for their ophthalmic drug delivery device.”

The significance of Kohn’s work is related to its general applicability to many different biomaterials design challenges as evidenced by the diversity of products being commercialized using this discovery process.

The scientific foundations of the new biomaterials discovery process are being developed with support to the New Jersey Center for Biomaterials and the Kohn Laboratory from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health.

In collaboration with REVA, Kohn and his colleagues developed a polymer that is exceptionally strong and highly suitable for stent applications. In addition, the material was designed to be radio-opaque so it is X-ray visible, a property critical to the proper placement of the stent in the artery. It is also biodegradable and biocompatible.

Pazzani said that reaching the clinical trial stage is an accomplishment for the university and a great source of pride. “This is a major achievement for our state, a success story for our Office of Corporate Liaison and Technology Transfer,” he said, and, Pazzani added, “it is significant validation for the work of Rutgers scientists.”

Joseph Blumberg | EurekAlert!
Further information:

Further reports about: Biomaterial Design Kohn’s Polymer Stent

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>