Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sidestepping cancer's chaperone

22.10.2007
UMass Medical School scientists target the mitochondria of tumor cells with novel anticancer agents

Cancerous tumors are wildly unfavorable environments. Struggling for oxygen and nutrients while being bombarded by the body’s defense systems, tumor cells in fact require sophisticated adaptations to survive and grow. For decades, scientists have sought ways to circumvent these adaptations to destroy cancer.

Now, researchers at the University of Massachusetts Medical School (UMMS), have defined a method to target and kill cancer’s “chaperone”—a protein that promotes tumor cell stability and survival—without damaging healthy cells nearby.

In “Regulation of Tumor Cell Mitochondrial Homeostasis by an Organelle-Specific Hsp90 Chaperone Network,” published in the October 19 issue of Cell, Dario C. Altieri, MD, the Eleanor Eustis Farrington Chair in Cancer Research and professor and chair of cancer biology, and colleagues at UMMS, identify a new pathway by which cancer cells grow and survive—and provide a clear blueprint for the design and production of a novel class of anticancer agents aimed squarely at that pathway.

While previous research has demonstrated that a class of proteins known as molecular chaperones promote tumor cell survival, the specific way in which the proteins achieve this has not been well understood. And although inhibitors of a specific chaperone known as heat shock protein 90 (Hsp90) have been studied for the treatment of cancer, progress has been questionable. In this current research, Dr. Altieri and colleagues sought to both define the mechanism by which Hsp90 leads to tumor cell stability and survival, and understand why general suppression of Hsp90 has not been as successful in clinical trials.

Notably, they found a very abundant pool of Hsp90 (and its related molecule TRAP-1) in the mitochondria of tumor cells. Mitochondria are organelles that produce a cell’s energy, but also play a key role in cell death. Indeed, many current drugs and treatments work by damaging the mitochondria. Data obtained by Altieri and colleagues indicate that Hsp90 and TRAP-1 protect mitochondria in tumor cells from fulfilling their role in cell death. Significantly, the increased levels of Hsp90 and TRAP-1 were found only in the mitochondria of tumor cells—not in those of normal cells.

“We have identified this mitochondrial accumulation of Hsp90 and TRAP-1 as a critical adaptive mechanism that makes cancer cells less susceptible to the unfavorable environment of tumors, and to various anticancer agents,” Altieri explained.

This new understanding of the sub-cellular location of Hsp90 and TRAP-1 in the mitochondria also answers the question as to why the current Hsp90 inhibitors—which do not penetrate the mitochondria—are not as effective as hoped in the clinic. In this study, Altieri and colleagues synthesized a new compound, modifying an existing Hsp90 inhibitor so that it was able to reach the mitochondria. When the inhibitors were able to penetrate the mitochondria, they were able to eliminate the protective function of Hsp90, and induce massive tumor cell death. Notably, because this accumulation of Hsp90 and TRAP-1 only occurs in tumor cells, drugs conceived to target Hsp90 would largely spare normal cells, minimizing or even nullifying the dramatic side effects that plague many current cancer treatments.

“This is an important discovery that opens the door to the design of a completely new class of anticancer agents,” Altieri explained. “It really turns the tables on a field that has been explored with only partial success. We can now take a class of drugs and make them better and more efficacious by engineering them to accumulate in the mitochondria.”

Kelly Bishop | EurekAlert!
Further information:
http://www.umassmed.edu

Further reports about: Altieri Hsp90 TRAP-1 anticancer chaperone colleagues mitochondria

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>