Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sidestepping cancer's chaperone

22.10.2007
UMass Medical School scientists target the mitochondria of tumor cells with novel anticancer agents

Cancerous tumors are wildly unfavorable environments. Struggling for oxygen and nutrients while being bombarded by the body’s defense systems, tumor cells in fact require sophisticated adaptations to survive and grow. For decades, scientists have sought ways to circumvent these adaptations to destroy cancer.

Now, researchers at the University of Massachusetts Medical School (UMMS), have defined a method to target and kill cancer’s “chaperone”—a protein that promotes tumor cell stability and survival—without damaging healthy cells nearby.

In “Regulation of Tumor Cell Mitochondrial Homeostasis by an Organelle-Specific Hsp90 Chaperone Network,” published in the October 19 issue of Cell, Dario C. Altieri, MD, the Eleanor Eustis Farrington Chair in Cancer Research and professor and chair of cancer biology, and colleagues at UMMS, identify a new pathway by which cancer cells grow and survive—and provide a clear blueprint for the design and production of a novel class of anticancer agents aimed squarely at that pathway.

While previous research has demonstrated that a class of proteins known as molecular chaperones promote tumor cell survival, the specific way in which the proteins achieve this has not been well understood. And although inhibitors of a specific chaperone known as heat shock protein 90 (Hsp90) have been studied for the treatment of cancer, progress has been questionable. In this current research, Dr. Altieri and colleagues sought to both define the mechanism by which Hsp90 leads to tumor cell stability and survival, and understand why general suppression of Hsp90 has not been as successful in clinical trials.

Notably, they found a very abundant pool of Hsp90 (and its related molecule TRAP-1) in the mitochondria of tumor cells. Mitochondria are organelles that produce a cell’s energy, but also play a key role in cell death. Indeed, many current drugs and treatments work by damaging the mitochondria. Data obtained by Altieri and colleagues indicate that Hsp90 and TRAP-1 protect mitochondria in tumor cells from fulfilling their role in cell death. Significantly, the increased levels of Hsp90 and TRAP-1 were found only in the mitochondria of tumor cells—not in those of normal cells.

“We have identified this mitochondrial accumulation of Hsp90 and TRAP-1 as a critical adaptive mechanism that makes cancer cells less susceptible to the unfavorable environment of tumors, and to various anticancer agents,” Altieri explained.

This new understanding of the sub-cellular location of Hsp90 and TRAP-1 in the mitochondria also answers the question as to why the current Hsp90 inhibitors—which do not penetrate the mitochondria—are not as effective as hoped in the clinic. In this study, Altieri and colleagues synthesized a new compound, modifying an existing Hsp90 inhibitor so that it was able to reach the mitochondria. When the inhibitors were able to penetrate the mitochondria, they were able to eliminate the protective function of Hsp90, and induce massive tumor cell death. Notably, because this accumulation of Hsp90 and TRAP-1 only occurs in tumor cells, drugs conceived to target Hsp90 would largely spare normal cells, minimizing or even nullifying the dramatic side effects that plague many current cancer treatments.

“This is an important discovery that opens the door to the design of a completely new class of anticancer agents,” Altieri explained. “It really turns the tables on a field that has been explored with only partial success. We can now take a class of drugs and make them better and more efficacious by engineering them to accumulate in the mitochondria.”

Kelly Bishop | EurekAlert!
Further information:
http://www.umassmed.edu

Further reports about: Altieri Hsp90 TRAP-1 anticancer chaperone colleagues mitochondria

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>