Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers studying how singing bats communicate

22.10.2007
Bats are the most vocal mammals other than humans, and understanding how they communicate during their nocturnal outings could lead to better treatments for human speech disorders, say researchers at Texas A&M University.

Thousands of bats native to Central Texas fly overhead each night singing songs of complex syllables – but at frequencies too high for humans to hear.

Texas A&M researcher Michael Smotherman is trying to understand how Mexican Freetail bats organize syllables into songs and how their communication is linked to the brain. “If we can identify those areas in a bat brain [responsible for communication], we can learn more about how a normal [human] brain generates and orchestrates complex communication sequences,” Smotherman says. “And by understanding how that works, we can then come up with testable hypotheses about what might be going on in speech disorders.”

The researchers in Smotherman’s lab are studying two aspects of bat communication. In behavioral studies, they examine sex differences and seasonal variations in communication, and in physiology studies they try to locate the parts of the bat brain active during communication.

Mexican Freetail bats sing mostly in ultrasonic frequencies that are right above the upper limit of human hearing. Humans can sometimes hear little bits of bat songs, however, when parts of syllables drop low enough.

Bats communicate at such high frequencies because of their ability to echolocate, which means they project sound and use the echoes to determine the direction and distance of objects. As the frequency of the bat’s sound gets higher, it can detect a more detailed picture of its surroundings.

Smotherman says Mexican Freetail bats use between 15 and 20 syllables to create calls. Every male bat has its own unique courtship song. The pattern of all courtship songs is similar, but each male bat uses a different syllable in its distinctive song. Bats also use sophisticated vocal communication to draw territorial borders, define social status, repel intruders, instruct offspring and recognize each other.

“No other mammals besides humans are able to use such complex vocal sequences to communicate,” Smotherman says.

The songs bats sing are similar to bird songs. Scientists have understood the link between bird songs and the bird brain for years, but “the architecture of a bird brain is very different from that of a mammal brain,” Smotherman explains, “so it is difficult to apply knowledge about bird communication to human speech.”

The brains of all mammals are organized in basically the same way, so a bat brain has many of the same structures as a human brain. This makes it easier to infer things about human speech from studying bat communication. The researchers’ first goal is to locate the part of the bat brain responsible for singing. “The bat brain has to have some higher vocal center that’s responsible for organizing these [vocal] sequences and patterns, and we just don’t know where it is yet,” Smotherman says. “So we’re using molecular techniques to identify which regions of the brain are most active during singing.”

Smotherman and his team maintain about 75 bats in their lab. They usually collect the bats from schools and churches that report bats in their buildings. “[By doing this,] we don’t have to feel like we’re taking them out of the wild,” Smotherman says. He adds that the bats are not aggressive and are a “fantastic bat for the lab because they are quite friendly.”

Smotherman hopes that over the next decade, the group can apply its research to knowledge of human speech and help shed light on language disorders. “The fact that human speech is so unique has really constrained research in this area,” Smotherman says. “Compared to other areas of neuroscience, we’re way behind in understanding even the most basic issues of how [speech] works.”

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: Smotherman communicate mammal singing studying syllable vocal

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>