Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells fighting chronic infections become progressively 'exhausted,' ineffective

22.10.2007
Potential interventions to restore disease-fighting capability outlined

A new study of immune cells battling a chronic viral infection shows that the cells, called T cells, become exhausted by the fight in specific ways, undergoing profound changes that make them progressively less effective over time.

The findings also point to interventions that would reverse the changes, suggesting that novel therapies could be developed to reinvigorate T cells that become depleted in their struggle against a virus. Alternatively, strategies that would intentionally trigger the immune-dampening mechanisms explored in the study could prove useful in countering autoimmune disorders in which the immune system is inappropriately activated.

Although the experiments were conducted in mice, the problem of T-cell exhaustion has also been identified in HIV, hepatitis B, and hepatitis C infections in humans, as well as some cancers, such as melanoma. A report on the study results appears in the current issue of Immunity, published online October 18.

“We knew that T cells responding to chronic infections become progressively compromised in many of their functional properties,” says E. John Wherry, Ph.D., an assistant professor in the Immunology Program at The Wistar Institute and lead author on the Immunity study. “Put simply, the T cells become exhausted as time passes. What we wanted to learn in our study was what the specific problems were with these cells and whether their depleted state could be reversed.”

Using a technique called gene-expression profiling, Wherry and his colleagues identified 490 genes whose activity in T cells is altered during a chronic viral infection. Closer study at different time points using a 22-gene subset of the larger group of genes provided molecular signatures of progressive T-cell exhaustion. Only a few changes in the activity of the 22 genes were seen at the end of the first week of infection, increasing to 9 differences at two weeks, 18 differences at one month, and 21 differences at two months. At the end of two months, T cells contending with a chronic infection were sluggish metabolically and immunologically unresponsive to stimulus.

One gene identified as playing a central role in this process is called PD-1, which codes for an inhibitory receptor on the surface of the T cells. By blocking PD-1 in vivo, the researchers found they could alleviate T-cell exhaustion, get more functional T cells, and control the infection better.

“Blocking this one pathway partially reverses T-cell exhaustion in some settings, suggesting that we may be able to intervene to reinvigorate depleted immune cells,” says Wherry. “The T cells undergo many changes during chronic infections, however, so that it will be important to learn how to treat them for multiple problems.”

Wherry notes that the mechanisms involved in T-cell exhaustion also have important upsides.

“The flip side of this process is that the immune system has developed an effective way to turn off its response to a stimulus – which is exactly what one wants to do in the case of autoimmunity,” he says.

He points out, too, that the energy outlay during the acute phase of the immune system’s response to an infection is enormous – and fundamentally unsustainable.

“In the first week of an immune response to a virus, T cells can divide every four to six hours, as fast as any other mammalian cell at any time during development,” Wherry says. “In terms of their rate of division, T cells are in the same category as cells in the earliest stages of embryonic development. The energy involved in doing this is extraordinary, and the body can’t keep that up for an extended period of time.”

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Chronic T cells T-cell Wherry become exhaustion progressively

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>