Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sticky mussels inspire biomedical engineer yet again

Mussels are delicious when cooked in a white wine broth, but they also have two other well-known qualities before they’re put in a pot: they stick to virtually all inorganic and organic surfaces, and they stick with amazing tenacity.

Northwestern University biomedical engineer Phillip B. Messersmith already has developed a material that mimics the strength of the bonds; now he has produced a versatile coating method that mimics the mussels’ ability to attach to a wide variety of objects.

Messersmith and his research team, in a study to be published in the Oct. 19 issue of the journal Science, report that a broad variety of materials can be coated and functionalized through the application of a surface layer of polydopamine.

Potential applications of the simple and inexpensive method include flexible electronics, such as bendable and flexible displays, biosensors, medical devices, marine anti-fouling coatings, and water processing and treatment, such as removing heavy metals from contaminated water.

... more about:
»Messersmith »dopamine »mimic »polydopamine »variety

Key to the coating method is the small molecule dopamine, commonly known as a neurotransmitter. Dopamine, it turns out, is a good mimic of the essential components of mussel adhesive proteins, and the researchers use it as a building block for polymer coatings. (Dopamine itself is not found in mussels.) So, like a mussel, Messersmith’s coating sticks to anything.

“This is an astonishingly simple and versatile approach to functional surface modification of materials,” said Messersmith, professor of biomedical engineering at Northwestern’s McCormick School of Engineering and Applied Science, who led the research. “We dissolve dopamine, which we buy at low cost, in a beaker of water exposed to air. We adjust the water’s pH to marine pH, about 8.5, put in an object and several hours later it’s coated with a thin film of polydopamine. That’s it.”

Solid objects of any size and shape can be immersed in the solution. (The dopamine solution is very dilute -- only two milligrams of dopamine per one milliliter of water.) At marine pH, there are chemical changes in the dopamine molecule that result in polymerization of the molecules together to form a polymer, polydopamine, which coats the object. The polymer is fairly similar to what is found in the mussel adhesive protein.

And to make things more interesting, the polydopamine coating, in turn, provides a very chemically reactive surface onto which the researchers can deposit a second coating. And because the surface is so reactive in so many different ways, a wide variety of second coatings can be applied.

“We take advantage of that reactivity to apply the second layer,” said Messersmith. “As a simple example, I could put an iPod in the dopamine solution, and a thin polydopamine coating would form. Then I could take it out and put it in a metal salt solution and form a coating of copper or silver.”

This second coating, depending on what it is, promises to take researchers and industry in multiple directions as far as applications go. In addition to cladding objects with metal coatings, this includes inhibiting biofouling of materials (such as for medical devices), engineering surfaces to support biospecific interactions with cells (such as for culture and expansion of stem cells) and applying self-assembled monolayers to nonmetal surfaces (such as for biosensors).

Messersmith and his colleagues tested the two-step process on 25 different substrate materials (but not an iPod) with a wide range of characteristics representing all major classes of materials, from hydrophobic to hydrophilic, from inorganic to organic, as well as the traditionally difficult material Teflon, all with positive results. They then demonstrated deposition of metal and organic coatings and self-assembled monolayers onto the polydopamine coating.

“Existing methods for modifying material surfaces are fairly restricted to specific materials -- what works well on glass would not work well on gold,” said Messersmith. “Our method is a much more general strategy for a variety of surfaces. We haven’t found a material to which we can’t apply polydopamine.”

Megan Fellman | EurekAlert!
Further information:

Further reports about: Messersmith dopamine mimic polydopamine variety

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>