Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sticky mussels inspire biomedical engineer yet again

22.10.2007
Mussels are delicious when cooked in a white wine broth, but they also have two other well-known qualities before they’re put in a pot: they stick to virtually all inorganic and organic surfaces, and they stick with amazing tenacity.

Northwestern University biomedical engineer Phillip B. Messersmith already has developed a material that mimics the strength of the bonds; now he has produced a versatile coating method that mimics the mussels’ ability to attach to a wide variety of objects.

Messersmith and his research team, in a study to be published in the Oct. 19 issue of the journal Science, report that a broad variety of materials can be coated and functionalized through the application of a surface layer of polydopamine.

Potential applications of the simple and inexpensive method include flexible electronics, such as bendable and flexible displays, biosensors, medical devices, marine anti-fouling coatings, and water processing and treatment, such as removing heavy metals from contaminated water.

... more about:
»Messersmith »dopamine »mimic »polydopamine »variety

Key to the coating method is the small molecule dopamine, commonly known as a neurotransmitter. Dopamine, it turns out, is a good mimic of the essential components of mussel adhesive proteins, and the researchers use it as a building block for polymer coatings. (Dopamine itself is not found in mussels.) So, like a mussel, Messersmith’s coating sticks to anything.

“This is an astonishingly simple and versatile approach to functional surface modification of materials,” said Messersmith, professor of biomedical engineering at Northwestern’s McCormick School of Engineering and Applied Science, who led the research. “We dissolve dopamine, which we buy at low cost, in a beaker of water exposed to air. We adjust the water’s pH to marine pH, about 8.5, put in an object and several hours later it’s coated with a thin film of polydopamine. That’s it.”

Solid objects of any size and shape can be immersed in the solution. (The dopamine solution is very dilute -- only two milligrams of dopamine per one milliliter of water.) At marine pH, there are chemical changes in the dopamine molecule that result in polymerization of the molecules together to form a polymer, polydopamine, which coats the object. The polymer is fairly similar to what is found in the mussel adhesive protein.

And to make things more interesting, the polydopamine coating, in turn, provides a very chemically reactive surface onto which the researchers can deposit a second coating. And because the surface is so reactive in so many different ways, a wide variety of second coatings can be applied.

“We take advantage of that reactivity to apply the second layer,” said Messersmith. “As a simple example, I could put an iPod in the dopamine solution, and a thin polydopamine coating would form. Then I could take it out and put it in a metal salt solution and form a coating of copper or silver.”

This second coating, depending on what it is, promises to take researchers and industry in multiple directions as far as applications go. In addition to cladding objects with metal coatings, this includes inhibiting biofouling of materials (such as for medical devices), engineering surfaces to support biospecific interactions with cells (such as for culture and expansion of stem cells) and applying self-assembled monolayers to nonmetal surfaces (such as for biosensors).

Messersmith and his colleagues tested the two-step process on 25 different substrate materials (but not an iPod) with a wide range of characteristics representing all major classes of materials, from hydrophobic to hydrophilic, from inorganic to organic, as well as the traditionally difficult material Teflon, all with positive results. They then demonstrated deposition of metal and organic coatings and self-assembled monolayers onto the polydopamine coating.

“Existing methods for modifying material surfaces are fairly restricted to specific materials -- what works well on glass would not work well on gold,” said Messersmith. “Our method is a much more general strategy for a variety of surfaces. We haven’t found a material to which we can’t apply polydopamine.”

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: Messersmith dopamine mimic polydopamine variety

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>