Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In vitro models will minimize animal use in arthritis studies

22.10.2007
MU researchers have developed a model that mimics actual joints

It’s hard to think of scientists in laboratories working toward solutions for medical problems without mice or other laboratory animals, but animals’ roles in at least one major research laboratory may soon be minimal.

Researchers at the University of Missouri-Columbia's Comparative Orthopaedic Laboratory (COL) have developed an in vitro model using small sections of joint capsule and cartilage typically discarded that mimics arthritic joints. This "joint in a test tube" model can be used to investigate causes and mechanisms for the development and progression of arthritis and to screen new treatments such as pharmaceuticals. The MU research team which developed this model has shown that the results have valid and direct clinical implications for arthritis in dogs and humans.

Often, clinical research is limited by patient numbers, accessibility to appropriate samples and ethical considerations. Using in vitro models eliminates some of these barriers and allows researchers to better understand of the disease’s development, characteristics and responses to various injuries, treatments and loads. The in vitro model acts similar to an actual joint with the same histological, biochemical and molecular changes.

... more about:
»Animal »Arthritis »Researchers »VITRO »allow

“These in vitro models will allow us to perform our research without using animals while still accurately mimicking situations in real life,” said James Cook, professor of veterinary medicine and surgery and the William C. Allen Endowed Scholar for Orthopaedic Research. “We can screen new drugs for arthritis in a more efficient and cost-effective way such that real progress is achieved more quickly.”

The in vitro models allow for all of the tissue in a normal joint to be "grown" together such that the different types of tissues can "communicate" as they do in the actual joint. COL researchers have shown that this system maintains the tissues' appearance, composition, and function so that they react to health and disease as they would in real life. The system then allows drugs, nutritional supplements and even exercise regimens to be tested on the in vitro model.

For example, scientists can determine the effects of pressure to the joints after running or walking using a bioreactor, a device which loads the tissues in the "test tube" environment. Using this new model, MU researchers will unlock clues, on a molecular level, as to why recovery is important in healthy athletes as well as people with arthritis.

“Using the joints in the test tubes will allow for greater flexibility when studying arthritis,” Cook said. “We can test literally hundreds of different loads on joints in a single day and show results in real time. It is strengthening our research as we are able to explain data on a molecular level and then translate it to what happens to people and pets that struggle with arthritis every day.

“These in vitro models also provide a much safer mechanism for investigating new drugs and therapies. If severe side effects occur, all we have do is assess what has happened to the tissues rather than trying to treat a laboratory animal or a patient with an adverse reaction.”

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: Animal Arthritis Researchers VITRO allow

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>