Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New inhibitor has potential as cancer drug

22.10.2007
Laboratory experiments have previously shown that cancer cells overproduce an enzyme, heparanase, which splits the body’s own polysaccharide heparan sulfate into shorter fragments. The amount of enzyme is related to the degree of malignancy.

Today a study is being published in the journal Nature Chemical Biology in which Uppsala University researchers show, on the basis of animal models, that an inhibitor for heparanase would be extremely interesting as a drug candidate.

Heparan sulfate is a polysaccharide, that is, a chain of linked sugar units, with sulfate groups in different positions. These chains are found on the surface of practically every cell in the body. The sulfate groups enable binding to a number of proteins, such as inflammation proteins and growth factors. Heparan sulfate can thereby regulate different processes in the body, during embryonic development, for example, but also in various conditions of sickness. The capacity for protein-binding generally increases the more sulfate groups there are on the polysaccharide.

The enzyme heparanase splits heparan sulfate at certain points and converts the long chains into shorter fragments. Research at other laboratories has shown that cancer cells in many cases overproduce heparanase and that the amount of heparanase correlates with the degree of malignancy of the cancer cells and their capacity to metasthesize. The connection is believed to have multiple explanations. Heparanase helps cancer cells make their way through tissue barriers, but it also stimulates the heightened generation of blood vessels that is necessary for tumor growth. The fragments function as carriers of growth factors that can promote tumor growth in many ways.

In the current project the scientists introduced the gene for human heparanase into a mouse, so that the enzyme would be overproduced in several organs. Besides the expected splitting of heparan sulfate, they found that the metabolism of the polysaccharide was stimulated, but that the number of sulfate groups increased at the same time.

The ‘high-sulfated’ fragments released by the enzyme evince dramatically increased binding to certain growth factors of potential importance to tumor growth. When they examined heparan sulfate from authentic cancer cells instead, or from cancer tissue that had overproduced heparanase, it was found that here too there was an increase in the number of sulfate groups compared with heparan sulfate from corresponding normal cells/tissues. The findings indicate that producing an inhibitor for heparanase is an urgent step in discovering new drugs for cancer.

Anneli Waara | alfa
Further information:
http://www.nature.com/nchembio/journal/vaop/ncurrent/abs/nchembio.2007.41.html

Further reports about: Chain Inhibitor enzyme fragments heparan heparanase polysaccharide sulfate

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>