Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New inhibitor has potential as cancer drug

22.10.2007
Laboratory experiments have previously shown that cancer cells overproduce an enzyme, heparanase, which splits the body’s own polysaccharide heparan sulfate into shorter fragments. The amount of enzyme is related to the degree of malignancy.

Today a study is being published in the journal Nature Chemical Biology in which Uppsala University researchers show, on the basis of animal models, that an inhibitor for heparanase would be extremely interesting as a drug candidate.

Heparan sulfate is a polysaccharide, that is, a chain of linked sugar units, with sulfate groups in different positions. These chains are found on the surface of practically every cell in the body. The sulfate groups enable binding to a number of proteins, such as inflammation proteins and growth factors. Heparan sulfate can thereby regulate different processes in the body, during embryonic development, for example, but also in various conditions of sickness. The capacity for protein-binding generally increases the more sulfate groups there are on the polysaccharide.

The enzyme heparanase splits heparan sulfate at certain points and converts the long chains into shorter fragments. Research at other laboratories has shown that cancer cells in many cases overproduce heparanase and that the amount of heparanase correlates with the degree of malignancy of the cancer cells and their capacity to metasthesize. The connection is believed to have multiple explanations. Heparanase helps cancer cells make their way through tissue barriers, but it also stimulates the heightened generation of blood vessels that is necessary for tumor growth. The fragments function as carriers of growth factors that can promote tumor growth in many ways.

In the current project the scientists introduced the gene for human heparanase into a mouse, so that the enzyme would be overproduced in several organs. Besides the expected splitting of heparan sulfate, they found that the metabolism of the polysaccharide was stimulated, but that the number of sulfate groups increased at the same time.

The ‘high-sulfated’ fragments released by the enzyme evince dramatically increased binding to certain growth factors of potential importance to tumor growth. When they examined heparan sulfate from authentic cancer cells instead, or from cancer tissue that had overproduced heparanase, it was found that here too there was an increase in the number of sulfate groups compared with heparan sulfate from corresponding normal cells/tissues. The findings indicate that producing an inhibitor for heparanase is an urgent step in discovering new drugs for cancer.

Anneli Waara | alfa
Further information:
http://www.nature.com/nchembio/journal/vaop/ncurrent/abs/nchembio.2007.41.html

Further reports about: Chain Inhibitor enzyme fragments heparan heparanase polysaccharide sulfate

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>