Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The accumulation of sugar in neurons may explain the origin of several neurodegenerative diseases

22.10.2007
A phenomenon considered healthy for cells, such as the accumulation of long chains of glucose (glycogen), which tissues store for energy purposes, is harmful for neurons.

Published in the latest issue of Nature Neuroscience, this finding has been made by a team of Spanish researchers led by Joan J. Guinovart, director of the Institute for Research in Biomedicine (IRB Barcelona) and senior professor at the University of Barcelona (UB), and Santiago Rodríguez de Córdoba, research professor at the Centro Superior de Investigaciones Científicas (CSIC).

This research has been possible thanks to close collaboration between these two groups, who, in addition, have been assisted by neurobiology expert Eduardo Soriano, who is also a researcher at IRB Barcelona and senior professor at the UB.

The researchers made the discovery while studying Lafora disease, a rare pathology that causes irreversible neurodegeneration in adolescents and for which no treatment is available. Lafora disease generally presents as epileptic seizures between 10 to 17 years of age and later on as myoclonus (involuntary twitching of the arms and legs). Its evolution is marked by progressive degeneration of the nervous system which reduces the patient to a terminal vegetative state ten years after its onset. This disease is inherited from parents who are carriers of mutations in one of the two genes associated with the pathology. These genes are called laforin (named after Dr. Lafora) and malin (from the French expression “le grand mal”, used to refer to epilepsy). The disease is characterized by the accumulation of abnormal inclusions, known as Lafora bodies, in neurons.

... more about:
»Lafora »glycogen »laforin »neurodegenerative »neurons

The study describes the function of laforin and malin, explains the origin of Lafora bodies and identifies how the neurodegenerative process of this disease arises. Joan J. Guinovart, expert in glycogen metabolism explains, “We have observed that laforin and malin act jointly as “guardians” of glycogen levels in neurons and are stimulated by the degradation of the proteins responsible for glucose accumulation. In a situation in which either of the two genes loses its function, these proteins are not degraded, glycogen accumulates and thus neurons deteriorate and cell suicide (apoptosis) ensues.

The conclusions of the study have increased expectations of finding a strategy to treat Lafora disease. One strategy consists of identifying a molecule with the capacity to inhibit glycogen synthesis in neurons.

The breakthroughs on the mechanisms that trigger and block the production of glycogen may be of great use to address the study of other neurodegenerative and neurological diseases. “We have extended the hypothesis of the study to other pathologies in which glycogen has been detected in neurons because our results suggest that this molecule is a part of the problem” comments Guinovart.

Spanish research contributions to Lafora disease have significantly improved our understanding of this pathology. These contributions date back to observations made by the physician Gonzalo Rodríguez Lafora, one of Santiago Ramón y Cajal’s students, who, in 1911, discovered the presence of “Lafora bodies” in the nervous system of patients with the disease that carries his name. In 1999, the team headed by Rodríguez de Córdoba, together with José María Serratosa, identified the laforin gene.

Sònia Armengou | alfa
Further information:
http://www.pcb.ub.es

Further reports about: Lafora glycogen laforin neurodegenerative neurons

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>