Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover how hormones achieve their effects

22.10.2007
The first quantitative study of protein complexes that transmit pheromone signals in living yeast cells sheds light on a crucial signalling process also found in humans

New insights into the cellular signal chain through which pheromones stimulate mating in yeast have been gained by scientists at the European Molecular Biology Laboratory (EMBL). Similar signal chains are found in humans, where they are involved in many important processes such as the differentiation of nerve cells and the development of cancer. A sophisticated microscopy technique allowed the researchers to observe for the first time the interplay of signalling molecules in living yeast cells, and to work out how they pass on a signal through the cell. The results are published in the current issue of Nature Cell Biology.

Upon release of a pheromone – a chemical signal stimulating mating behaviour - by a nearby cell, yeast cells form a projection that serves as a mating organ and brings about the fusion of two cells. The pheromone binds to a receptor on the cell’s exterior – in the same way as many growth hormones in humans do – which then sets off a signalling chain inside the cell. This chain consists of a series of proteins called MAP kinases, which pass on the signal by interacting with each other and activating the next downstream member of the chain by adding on phosphate residues. At the end of the chain are those molecules that bring about the changes that underpin the formation of the mating organ and the fusion of the cells.

Scientists in the groups of Michael Knop and Philippe Bastiaens at EMBL labelled members of the MAP kinase signalling chain with fluorescent molecules and observed their diffusion and interaction in living yeast cells stimulated with pheromones using a novel microscopic approach that does not disturb the natural state of the cell.

... more about:
»Fus3 »Pheromone »mating »signalling »yeast

“Our method is so precise that we could virtually count the molecules and the interactions between chain components,” says Knop. “To our surprise, the observed proteins in the cell’s interior did not interact more after stimulation by the pheromone. This means changes in interaction are not the way by which the signal is transmitted through the interior of the cell.”

Knop and his team revealed that the actual signal is not produced uniformly throughout the cell but only by the few chain components found in the mating projection. They activate a protein called Fus3, which diffuses into the centre of the cell to spread the signal. While travelling, however, Fus3 is constantly inactivated by proteins found in the interior of the cell.

“We found that the concentration of Fus3 activity is very high at the tip of the developing mating organ and then gradually gets less towards the centre of the cell,” says Celine Maeder, who carried out the research in Knop’s lab. “This sets up a gradient of Fus3 activity, which might allow the signal to have different effects in different parts of the cell.”

“This result is exciting,” concludes former EMBL group leader Philippe Bastiaens, who now is a director at the Max Planck Institute of Molecular Physiology. “It revolutionizes our understanding of signalling processes and the way we need to study them.” The MAP kinase signalling chain is conserved across species, and the insights gained in yeast contribute to a better understanding of a pathway also relevant to human biology and disease.

Published online in Nature Cell Biology on 21 October 2007.

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525
wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2007/21oct07/

Further reports about: Fus3 Pheromone mating signalling yeast

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>