Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover how hormones achieve their effects

22.10.2007
The first quantitative study of protein complexes that transmit pheromone signals in living yeast cells sheds light on a crucial signalling process also found in humans

New insights into the cellular signal chain through which pheromones stimulate mating in yeast have been gained by scientists at the European Molecular Biology Laboratory (EMBL). Similar signal chains are found in humans, where they are involved in many important processes such as the differentiation of nerve cells and the development of cancer. A sophisticated microscopy technique allowed the researchers to observe for the first time the interplay of signalling molecules in living yeast cells, and to work out how they pass on a signal through the cell. The results are published in the current issue of Nature Cell Biology.

Upon release of a pheromone – a chemical signal stimulating mating behaviour - by a nearby cell, yeast cells form a projection that serves as a mating organ and brings about the fusion of two cells. The pheromone binds to a receptor on the cell’s exterior – in the same way as many growth hormones in humans do – which then sets off a signalling chain inside the cell. This chain consists of a series of proteins called MAP kinases, which pass on the signal by interacting with each other and activating the next downstream member of the chain by adding on phosphate residues. At the end of the chain are those molecules that bring about the changes that underpin the formation of the mating organ and the fusion of the cells.

Scientists in the groups of Michael Knop and Philippe Bastiaens at EMBL labelled members of the MAP kinase signalling chain with fluorescent molecules and observed their diffusion and interaction in living yeast cells stimulated with pheromones using a novel microscopic approach that does not disturb the natural state of the cell.

... more about:
»Fus3 »Pheromone »mating »signalling »yeast

“Our method is so precise that we could virtually count the molecules and the interactions between chain components,” says Knop. “To our surprise, the observed proteins in the cell’s interior did not interact more after stimulation by the pheromone. This means changes in interaction are not the way by which the signal is transmitted through the interior of the cell.”

Knop and his team revealed that the actual signal is not produced uniformly throughout the cell but only by the few chain components found in the mating projection. They activate a protein called Fus3, which diffuses into the centre of the cell to spread the signal. While travelling, however, Fus3 is constantly inactivated by proteins found in the interior of the cell.

“We found that the concentration of Fus3 activity is very high at the tip of the developing mating organ and then gradually gets less towards the centre of the cell,” says Celine Maeder, who carried out the research in Knop’s lab. “This sets up a gradient of Fus3 activity, which might allow the signal to have different effects in different parts of the cell.”

“This result is exciting,” concludes former EMBL group leader Philippe Bastiaens, who now is a director at the Max Planck Institute of Molecular Physiology. “It revolutionizes our understanding of signalling processes and the way we need to study them.” The MAP kinase signalling chain is conserved across species, and the insights gained in yeast contribute to a better understanding of a pathway also relevant to human biology and disease.

Published online in Nature Cell Biology on 21 October 2007.

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525
wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2007/21oct07/

Further reports about: Fus3 Pheromone mating signalling yeast

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>