Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-Effect: Female Chromosome Confirmed a Prime Driver of Speciation

19.10.2007
Researchers at the University of Rochester believe they have just confirmed a controversial theory of evolution. The X chromosome is a strikingly powerful force in the origin of new species.

Biologists have argued for years whether the X chromosome—the female chromosome in most animals—plays a special role in the process of speciation. In a new study in the journal PLoS Biology, Daven Presgraves, professor of biology at the University of Rochester, has confirmed that the X chromosome is indeed heavily influential—and the reason may be nothing like what biologists expected.

When one species splits into two, interbreeding between the two daughter species is much more likely to produce infertile hybrids when the species exchange X chromosomes than when they exchange any other chromosomes, says Presgraves. The process, dubbed the "large X-effect," acts as a wedge between the two newly formed species, pushing them onto divergent evolutionary paths.

Over the course of a year, Presgraves and research associate J. P. Masly interbred fruit flies for 15 generations. The team painstakingly substituted individual genes of one fly species with the genes of a closely related species, and tracked which genes caused infertility in hybrids. The Rochester team showed that 60 percent of X-chromosome genes cause infertility in hybrid males—far higher than the 18 percent for all the non-sex chromosomes.

"There is no more debate," says Presgraves. "The large X-effect is real."

But in solving one mystery, the findings give rise to another.

Scientists expect evolutionary changes in DNA to accumulate in random locations across a genome, but Presgraves instead found that most changes causing hybrid infertility cluster inexplicably on the X chromosome.

Presgraves is now looking into why the X is a hotspot for "speciation genes," that prevent genetic exchanges between closely related species.

The traditional notion of the large X-effect is that the X chromosome is simply "exposed," meaning its complement, the Y chromosome, doesn't have the information needed to mask the effects of changes on the X. We inherit a set of chromosomes from each parent with each chromosome acting as a sort of backup for its complement. It's a bit like cross-referencing two encyclopedias for errors, says Presgraves. In the case of X and Y, however, it's like trying to cross-reference an encyclopedia with a pamphlet.

But Presgraves believes it's not a simple case of the X chromosome being exposed. He believes there's something special about the X. Somehow, it attracts genes that disrupt the creation of sperm in hybrid males—the main cause of the hybrid's infertility, he says.

"When I look at this, I think the X is not behaving normally during spermatogenesis (sperm creation)," says Presgraves. "I think it may be that in the production of sperm, when the fly's genome is shut down and compacted to fit into the sperm head, the X is not shutting down and is wrecking the process."

Presgraves is planning new tests to see if the X is, in fact, refusing to shut down when it should.

If the process that controls normal X inactivation during spermatogenesis is particularly susceptible to evolutionary change, says Presgraves, then it may be largely responsible for the X chromosome's unusually prominent role in the origin of new species.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

Further reports about: HYBRID Presgraves X chromosome infertility species sperm

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>