Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New virus drug will have to shoot at moving targets

The reproduction of the deadly hepatitis B virus is dependent on the mobility of one of the virus's RNAs. This is shown by Katja Petzold and Jürgen Schleucher, Umeå University, Sweden, in an article in the latest issue of the journal Nucleic Acids Research.

More than 300 million people all over the world are infected by hepatitis B virus (HBV), and there are 2 million deaths per year. The Umeå researchers have studied the mobility of the virus's RNA, a property that is necessary for HBV to reproduce. Besides Jürgen Schleucher and Katja Petzold, Karin Kidd-Ljunggren of Lund University in Sweden and Sybren Wijmenga of Nijmegen University in Holland are co-authors of the article.

The structures of proteins and nucleic acids are usually presented as still images. However, the molecules' functions or interactions with drugs are dependent on structural changes, and it is possible to reach only indirect conclusions about these on the basis of still images. Nuclear Magnetic Resonance (NMR) is the only technology that enables studies of movements in specific parts of molecules. With the aid of NMR, the relationship between the movement and function of molecules has been mapped for many proteins, but only for a few nucleic acids. This is unfortunate, especially because several new classes of RNA with regulatory functions have recently been discovered. This means that RNA is now regarded to an even greater extent as an active regulator of cellular events, not merely a passive messenger for information.

When new HBV particles are formed in infected cells, the virus must translate RNA to DNA, a process that is called reverse transcription. It starts with the virus enzyme reverse transcriptase binding to a strongly conserved RNA structure in the virus. The authors found that fully conserved nucleotides (the building blocks of RNA) in this RNA evince striking patterns of mobility. This indicates that these nucleotides in the free RNA temporarily visit the structures that they use in complexes with reverse transcriptases, and that their mobility facilitates binding. This means that drugs directed toward the hepatitis virus RNA need to bind to a moving target.

... more about:
»Hepatitis »MOVING »Mobility »RNA »binding

These detailed findings are based on the first application of a new NMR method that was developed at Umeå University. The new method enables studies of movements in the bindings in the RNA molecule that give it its form. The method can also be used for complex bindings between drug candidates and proteins or nucleic acids in order to elucidate the stabilizing forces at the atomic level. Therefore, this can be a key tool in biotechnology and the discovery of new drugs. The research team is now moving on to computer simulations to produce images of the movements in an RNA.

Reference: Petzold et al., Conserved nucleotides in an RNA essential for hepatitis B virus replication show distinct mobility patterns. Nucleic Acids Research, doi:10.1093/nar/gkm774

For more information, please contact Katja Petzold, Department of Medicinal Chemistry and Biophysics at e-mail or phone:

+46-90 786 97 19.

Pressofficer Bertil Born;; +46-703414 303

Bertil Born | idw
Further information:

Further reports about: Hepatitis MOVING Mobility RNA binding

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>