Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New virus drug will have to shoot at moving targets

19.10.2007
The reproduction of the deadly hepatitis B virus is dependent on the mobility of one of the virus's RNAs. This is shown by Katja Petzold and Jürgen Schleucher, Umeå University, Sweden, in an article in the latest issue of the journal Nucleic Acids Research.

More than 300 million people all over the world are infected by hepatitis B virus (HBV), and there are 2 million deaths per year. The Umeå researchers have studied the mobility of the virus's RNA, a property that is necessary for HBV to reproduce. Besides Jürgen Schleucher and Katja Petzold, Karin Kidd-Ljunggren of Lund University in Sweden and Sybren Wijmenga of Nijmegen University in Holland are co-authors of the article.

The structures of proteins and nucleic acids are usually presented as still images. However, the molecules' functions or interactions with drugs are dependent on structural changes, and it is possible to reach only indirect conclusions about these on the basis of still images. Nuclear Magnetic Resonance (NMR) is the only technology that enables studies of movements in specific parts of molecules. With the aid of NMR, the relationship between the movement and function of molecules has been mapped for many proteins, but only for a few nucleic acids. This is unfortunate, especially because several new classes of RNA with regulatory functions have recently been discovered. This means that RNA is now regarded to an even greater extent as an active regulator of cellular events, not merely a passive messenger for information.

When new HBV particles are formed in infected cells, the virus must translate RNA to DNA, a process that is called reverse transcription. It starts with the virus enzyme reverse transcriptase binding to a strongly conserved RNA structure in the virus. The authors found that fully conserved nucleotides (the building blocks of RNA) in this RNA evince striking patterns of mobility. This indicates that these nucleotides in the free RNA temporarily visit the structures that they use in complexes with reverse transcriptases, and that their mobility facilitates binding. This means that drugs directed toward the hepatitis virus RNA need to bind to a moving target.

... more about:
»Hepatitis »MOVING »Mobility »RNA »binding

These detailed findings are based on the first application of a new NMR method that was developed at Umeå University. The new method enables studies of movements in the bindings in the RNA molecule that give it its form. The method can also be used for complex bindings between drug candidates and proteins or nucleic acids in order to elucidate the stabilizing forces at the atomic level. Therefore, this can be a key tool in biotechnology and the discovery of new drugs. The research team is now moving on to computer simulations to produce images of the movements in an RNA.

Reference: Petzold et al., Conserved nucleotides in an RNA essential for hepatitis B virus replication show distinct mobility patterns. Nucleic Acids Research, doi:10.1093/nar/gkm774

For more information, please contact Katja Petzold, Department of Medicinal Chemistry and Biophysics at e-mail katja.petzold@medchem.umu.se or phone:

+46-90 786 97 19.

Pressofficer Bertil Born; bertil.born@adm.umu.se; +46-703414 303

Bertil Born | idw
Further information:
http://www.vr.se

Further reports about: Hepatitis MOVING Mobility RNA binding

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>