Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria Use Plant Defence for Genetic Modification

19.10.2007
Bacteria that cause tumours in plants modify plant genomes by skilfully exploiting the plants' first line of defence. Utilising the plant's own proteins, bacterial genes infiltrate first the nucleus then the plant genome, where they reprogramme the plant's metabolism to suit their own needs. This process was recently discovered as part of an Austrian Science Fund FWF project and was published today in SCIENCE.

The genetic manipulation of plants is both, a subject of great controversy in Europe and a tactic already practiced by certain bacteria. The soil bacterium known as crown-gall bacterium (Agrobacterium) manipulates the genetic make-up of plants by inserting its own DNA into the nuclei and, consequently, into the genetic material of the plant cells. The genetically modified plants are then reprogrammed to ensure uninhibited cell division and produce nutrients to feed the bacteria. What was not previously understood is exactly how bacteria genes infiltrate the cell's nucleus – particularly as the defence mechanisms of plant cells react so rapidly to bacterial invasion.

WEAK DEFENCES
A surprising detail of this process has now been uncovered by the team of Prof. Heribert Hirt working at the Max F. Perutz Laboratories at the University of Vienna and the URGV Plant Genomics Institute near Paris which Hirt joined as future director earlier this year. VIP1, a plant cell protein, is at the heart of their research. It was already known that this protein supports the transport of bacterial DNA known as T-DNA into the nucleus, and yet the exact role of VIP1 was unclear. Prof. Hirt explains: "We were able to show that VIP1 is a protein that regulates various genes designed to defend against bacterial invasion. However, VIP1 only occurs initially in the cytoplasm of cells and – in order to fulfil its role as a regulator – it then needs to migrate into the nucleus. It is precisely this movement that the bacterium exploits in order to inject its T-DNA into the nucleus." Prof. Hirt compares this strategy, which inevitably means that the plants own defences cause its downfall, to the famous Trojan Horse.
FRIEND & FOE
Prof. Hirt explains further – "Plants have an immune defence mechanism that is triggered when the plant detects certain molecules of the invader and works by activating genes in the nucleus." Once the invader has been detected, specific protein kinases in the cytoplasm are activated. These are enzymes that regulate the activity of other proteins by adding phosphate groups to them. One of the proteins phosphorylated by these protein kinases is VIP1, which is only granted access to the nucleus after this phosphorylation, so that it can activate the relevant defence genes there.

The following model illustrates the early processes in an infected plant cell. The invasion of T-DNA and the identification of the bacterium as an invader occur simultaneously. While protein kinases phosphorylate VIP1 in the cytoplasm, the bacterial T-DNA adheres to VIP1, thereby enabling it to infiltrate the nucleus unnoticed. The result is the joint infiltration of both friend and foe. Once inside the nucleus, the T-DNA is inserted into the plant genome and the process of tumour formation begins while the activated defence genes simultaneously organise the plant cell's defence mechanisms. It is too late though – the cell has already been transformed.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv200710-2en.html

Further reports about: Nucleus T-DNA VIP1 bacterium genes

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>