Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria Use Plant Defence for Genetic Modification

Bacteria that cause tumours in plants modify plant genomes by skilfully exploiting the plants' first line of defence. Utilising the plant's own proteins, bacterial genes infiltrate first the nucleus then the plant genome, where they reprogramme the plant's metabolism to suit their own needs. This process was recently discovered as part of an Austrian Science Fund FWF project and was published today in SCIENCE.

The genetic manipulation of plants is both, a subject of great controversy in Europe and a tactic already practiced by certain bacteria. The soil bacterium known as crown-gall bacterium (Agrobacterium) manipulates the genetic make-up of plants by inserting its own DNA into the nuclei and, consequently, into the genetic material of the plant cells. The genetically modified plants are then reprogrammed to ensure uninhibited cell division and produce nutrients to feed the bacteria. What was not previously understood is exactly how bacteria genes infiltrate the cell's nucleus – particularly as the defence mechanisms of plant cells react so rapidly to bacterial invasion.

A surprising detail of this process has now been uncovered by the team of Prof. Heribert Hirt working at the Max F. Perutz Laboratories at the University of Vienna and the URGV Plant Genomics Institute near Paris which Hirt joined as future director earlier this year. VIP1, a plant cell protein, is at the heart of their research. It was already known that this protein supports the transport of bacterial DNA known as T-DNA into the nucleus, and yet the exact role of VIP1 was unclear. Prof. Hirt explains: "We were able to show that VIP1 is a protein that regulates various genes designed to defend against bacterial invasion. However, VIP1 only occurs initially in the cytoplasm of cells and – in order to fulfil its role as a regulator – it then needs to migrate into the nucleus. It is precisely this movement that the bacterium exploits in order to inject its T-DNA into the nucleus." Prof. Hirt compares this strategy, which inevitably means that the plants own defences cause its downfall, to the famous Trojan Horse.
Prof. Hirt explains further – "Plants have an immune defence mechanism that is triggered when the plant detects certain molecules of the invader and works by activating genes in the nucleus." Once the invader has been detected, specific protein kinases in the cytoplasm are activated. These are enzymes that regulate the activity of other proteins by adding phosphate groups to them. One of the proteins phosphorylated by these protein kinases is VIP1, which is only granted access to the nucleus after this phosphorylation, so that it can activate the relevant defence genes there.

The following model illustrates the early processes in an infected plant cell. The invasion of T-DNA and the identification of the bacterium as an invader occur simultaneously. While protein kinases phosphorylate VIP1 in the cytoplasm, the bacterial T-DNA adheres to VIP1, thereby enabling it to infiltrate the nucleus unnoticed. The result is the joint infiltration of both friend and foe. Once inside the nucleus, the T-DNA is inserted into the plant genome and the process of tumour formation begins while the activated defence genes simultaneously organise the plant cell's defence mechanisms. It is too late though – the cell has already been transformed.

Till C. Jelitto | alfa
Further information:

Further reports about: Nucleus T-DNA VIP1 bacterium genes

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>