Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzymes find pastures greener

17.04.2002


Chemists put biological catalysts to work in clean industrial solvents.



In a move towards cleaner chemical processing, researchers in Spain and France have worked out how to use enzymes as catalysts using two ’green’ solvents: one to dissolve the enzyme, the other to dissolve the materials it transforms.

In some industrial processes chemists have replaced polluting organic solvents, such as chlorine and benzene, with supercritical carbon dioxide. This is the liquid-like fluid that is made by putting carbon dioxide under moderately high pressure and at temperatures equivalent to a hot bath. Supercritical carbon dioxide dissolves many organic compounds used for chemical synthesis. It decaffeinates coffee, for example.


Another, more recent, green option is the use of ionic liquids - these are salts that are molten at room temperature. They too dissolve many organic compounds, and don’t give off nasty fumes.

Jose Iborra of the University of Murcia in Spain and co-workers have used a combination of supercritical carbon dioxide and ionic liquids to help an enzyme transform some organic molecules1. This is an ideal form of green chemistry, as it uses natural catalysts in clean solvents.

Enzymes are designed to work in water inside cells. But water won’t dissolve many of the organic reagents used in industrial and pharmaceutical chemistry. So many industrial processes that use enzymes as catalysts need organic solvents.

Unfortunately, enzymes typically don’t work well in carbon dioxide. "It reacts with the enzyme," explains chemist Eric Beckman of the University of Pittsburgh. This and other complications stop the enzyme working as a catalyst. Some enzymes, though, work well in ionic liquids. So Iborra’s group devised a two-phase reactor in which the organic starting materials are dissolved in supercritical carbon dioxide and passed through a chamber containing a yeast enzyme dissolved in an ionic liquid.

The enzyme converts the reagents to the desired products, presumably by reactions occurring at the boundary between the two solvents. Product molecules dissolve in the carbon dioxide and are carried out of the reaction chamber. The enzyme, which stays in the ionic solvent, is protected from the worst of the deactivating influence of carbon dioxide.

It’s not a perfect solution - some carbon dioxide can dissolve in the ionic liquid and so can still get at the enzyme. But it’s a lot better than trying to carry out the reaction entirely in carbon dioxide, which deactivates the enzyme quickly.

"It’s an intriguing idea," says Beckman, as using enzymes in supercritical solvents has previously been fraught with difficulties.

References
  1. Lozano, P. , de Diego, T., Carrie, D., Vaultier, M. & Iborra, J. L. Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chemical Communications, 2002, 692 - 693, (2002).


PHILIP BALL | © Nature News Service

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>