Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzymes find pastures greener

17.04.2002


Chemists put biological catalysts to work in clean industrial solvents.



In a move towards cleaner chemical processing, researchers in Spain and France have worked out how to use enzymes as catalysts using two ’green’ solvents: one to dissolve the enzyme, the other to dissolve the materials it transforms.

In some industrial processes chemists have replaced polluting organic solvents, such as chlorine and benzene, with supercritical carbon dioxide. This is the liquid-like fluid that is made by putting carbon dioxide under moderately high pressure and at temperatures equivalent to a hot bath. Supercritical carbon dioxide dissolves many organic compounds used for chemical synthesis. It decaffeinates coffee, for example.


Another, more recent, green option is the use of ionic liquids - these are salts that are molten at room temperature. They too dissolve many organic compounds, and don’t give off nasty fumes.

Jose Iborra of the University of Murcia in Spain and co-workers have used a combination of supercritical carbon dioxide and ionic liquids to help an enzyme transform some organic molecules1. This is an ideal form of green chemistry, as it uses natural catalysts in clean solvents.

Enzymes are designed to work in water inside cells. But water won’t dissolve many of the organic reagents used in industrial and pharmaceutical chemistry. So many industrial processes that use enzymes as catalysts need organic solvents.

Unfortunately, enzymes typically don’t work well in carbon dioxide. "It reacts with the enzyme," explains chemist Eric Beckman of the University of Pittsburgh. This and other complications stop the enzyme working as a catalyst. Some enzymes, though, work well in ionic liquids. So Iborra’s group devised a two-phase reactor in which the organic starting materials are dissolved in supercritical carbon dioxide and passed through a chamber containing a yeast enzyme dissolved in an ionic liquid.

The enzyme converts the reagents to the desired products, presumably by reactions occurring at the boundary between the two solvents. Product molecules dissolve in the carbon dioxide and are carried out of the reaction chamber. The enzyme, which stays in the ionic solvent, is protected from the worst of the deactivating influence of carbon dioxide.

It’s not a perfect solution - some carbon dioxide can dissolve in the ionic liquid and so can still get at the enzyme. But it’s a lot better than trying to carry out the reaction entirely in carbon dioxide, which deactivates the enzyme quickly.

"It’s an intriguing idea," says Beckman, as using enzymes in supercritical solvents has previously been fraught with difficulties.

References
  1. Lozano, P. , de Diego, T., Carrie, D., Vaultier, M. & Iborra, J. L. Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chemical Communications, 2002, 692 - 693, (2002).


PHILIP BALL | © Nature News Service

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>