Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzymes find pastures greener

17.04.2002


Chemists put biological catalysts to work in clean industrial solvents.



In a move towards cleaner chemical processing, researchers in Spain and France have worked out how to use enzymes as catalysts using two ’green’ solvents: one to dissolve the enzyme, the other to dissolve the materials it transforms.

In some industrial processes chemists have replaced polluting organic solvents, such as chlorine and benzene, with supercritical carbon dioxide. This is the liquid-like fluid that is made by putting carbon dioxide under moderately high pressure and at temperatures equivalent to a hot bath. Supercritical carbon dioxide dissolves many organic compounds used for chemical synthesis. It decaffeinates coffee, for example.


Another, more recent, green option is the use of ionic liquids - these are salts that are molten at room temperature. They too dissolve many organic compounds, and don’t give off nasty fumes.

Jose Iborra of the University of Murcia in Spain and co-workers have used a combination of supercritical carbon dioxide and ionic liquids to help an enzyme transform some organic molecules1. This is an ideal form of green chemistry, as it uses natural catalysts in clean solvents.

Enzymes are designed to work in water inside cells. But water won’t dissolve many of the organic reagents used in industrial and pharmaceutical chemistry. So many industrial processes that use enzymes as catalysts need organic solvents.

Unfortunately, enzymes typically don’t work well in carbon dioxide. "It reacts with the enzyme," explains chemist Eric Beckman of the University of Pittsburgh. This and other complications stop the enzyme working as a catalyst. Some enzymes, though, work well in ionic liquids. So Iborra’s group devised a two-phase reactor in which the organic starting materials are dissolved in supercritical carbon dioxide and passed through a chamber containing a yeast enzyme dissolved in an ionic liquid.

The enzyme converts the reagents to the desired products, presumably by reactions occurring at the boundary between the two solvents. Product molecules dissolve in the carbon dioxide and are carried out of the reaction chamber. The enzyme, which stays in the ionic solvent, is protected from the worst of the deactivating influence of carbon dioxide.

It’s not a perfect solution - some carbon dioxide can dissolve in the ionic liquid and so can still get at the enzyme. But it’s a lot better than trying to carry out the reaction entirely in carbon dioxide, which deactivates the enzyme quickly.

"It’s an intriguing idea," says Beckman, as using enzymes in supercritical solvents has previously been fraught with difficulties.

References
  1. Lozano, P. , de Diego, T., Carrie, D., Vaultier, M. & Iborra, J. L. Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chemical Communications, 2002, 692 - 693, (2002).


PHILIP BALL | © Nature News Service

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>