Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accessory protein determines whether pheromones are detected

18.10.2007
Pheromones are like the molecules you taste as you chomp on a greasy french fry: big and fatty. In research to be published in the October 17 advance online issue of Nature, Rockefeller University researchers reveal an unanticipated role for a new CD36-like protein to help cells detect these invisible communication signals that drive a wide range of behaviors, from recognizing a sibling to courting a mate, a finding that may explain what pheromone communication, pathogen recognition and fat taste perception all have in common.

Scientists led by Leslie Vosshall, head of the Laboratory of Neurogenetics and Behavior, have found that this protein, called SNMP, or Sensory Neuron Membrane Protein, plays an accessory, yet essential role in helping neurons detect pheromones. Although SNMP plays a specific role in insect pheromone detection, it is a member of the CD36 family of proteins, members of which are found on the surfaces of many cells and have diverse roles, ranging from fatty-acid breakdown to innate immunity.

The pheromone that Vosshall and her colleagues tested, cVA, also known as cis-vaccenyl acetate, binds to a receptor complex and induces aggregation in Drosophila melanogaster. "I think of it as a 'party pheromone,'" says Vosshall. "If a few male flies are hanging out, other flies, male and female, will smell the cVA and tend to gather, and if the mood hits them, the males will court the females that join the group." When Drosophila do mate, the male transfers cVA to the female and marks her as taken, making her less interesting to other males. Prior research has implicated the receptor complex in pheromone detection, but this is the first time researchers have shown that SNMP is essential for neurons to respond to these signals.

When neurons detect cVA, those that express SNMP fire very rapidly, a response not seen in neurons that lack SNMP. However, when mutants were reengineered to express the protein, this response was restored. When flies were engineered to express a moth pheromone receptor, these fly neurons got excited by moth pheromone, and this response also required SNMP. So SNMP seems to be essential for handing off insect pheromones of all types, and will probably be important for pheromone reception in all insects.

... more about:
»CD36 »Protein »SNMP »Vosshall »cVA »neurons »receptor

In this study, Vosshall and her colleagues present a unifying mechanism of action for CD36 proteins, despite their wide range of biological functions. "Our work suggests that wherever you have lipid-like molecules that need to be detected or captured by cells, these CD36 proteins appear to be necessary to grab these molecules and present them to a specific cell-surface receptor," says Vosshall.

In the case of immune recognition, a CD36 protein grabs a bacterial lipid fragment and delivers it to its receptor. These proteins are also found in the tongue, where CD36 has been suggested to function as a fat taste receptor. Based on the SNMP work, Vosshall suspects that CD36 probably plays an accessory, yet essential role - it binds that big, fatty molecule from your french fry and presents it to the real, as yet unidentified, fat taste receptor.

Thania Benios | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: CD36 Protein SNMP Vosshall cVA neurons receptor

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>