Accessory protein determines whether pheromones are detected

Scientists led by Leslie Vosshall, head of the Laboratory of Neurogenetics and Behavior, have found that this protein, called SNMP, or Sensory Neuron Membrane Protein, plays an accessory, yet essential role in helping neurons detect pheromones. Although SNMP plays a specific role in insect pheromone detection, it is a member of the CD36 family of proteins, members of which are found on the surfaces of many cells and have diverse roles, ranging from fatty-acid breakdown to innate immunity.

The pheromone that Vosshall and her colleagues tested, cVA, also known as cis-vaccenyl acetate, binds to a receptor complex and induces aggregation in Drosophila melanogaster. “I think of it as a 'party pheromone,'” says Vosshall. “If a few male flies are hanging out, other flies, male and female, will smell the cVA and tend to gather, and if the mood hits them, the males will court the females that join the group.” When Drosophila do mate, the male transfers cVA to the female and marks her as taken, making her less interesting to other males. Prior research has implicated the receptor complex in pheromone detection, but this is the first time researchers have shown that SNMP is essential for neurons to respond to these signals.

When neurons detect cVA, those that express SNMP fire very rapidly, a response not seen in neurons that lack SNMP. However, when mutants were reengineered to express the protein, this response was restored. When flies were engineered to express a moth pheromone receptor, these fly neurons got excited by moth pheromone, and this response also required SNMP. So SNMP seems to be essential for handing off insect pheromones of all types, and will probably be important for pheromone reception in all insects.

In this study, Vosshall and her colleagues present a unifying mechanism of action for CD36 proteins, despite their wide range of biological functions. “Our work suggests that wherever you have lipid-like molecules that need to be detected or captured by cells, these CD36 proteins appear to be necessary to grab these molecules and present them to a specific cell-surface receptor,” says Vosshall.

In the case of immune recognition, a CD36 protein grabs a bacterial lipid fragment and delivers it to its receptor. These proteins are also found in the tongue, where CD36 has been suggested to function as a fat taste receptor. Based on the SNMP work, Vosshall suspects that CD36 probably plays an accessory, yet essential role – it binds that big, fatty molecule from your french fry and presents it to the real, as yet unidentified, fat taste receptor.

Media Contact

Thania Benios EurekAlert!

More Information:

http://www.rockefeller.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors