Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Second phase of HapMap project is completed

18.10.2007
Database of human genetic diversity allows identification of disease-associated genes

Investigators from six countries have completed the second phase of the International HapMap Project, an effort to identify and catalog genetic similarities and differences among populations around the world. Information provided in the first phase of the HapMap, completed in 2005, has led to the development of techniques facilitating the search for genes associated with common diseases – such as schizophrenia and heart disease – and the identification of more than 50 such disease-associated genes.

In the past year, using data and methods based on the HapMap, MGH researchers have published new genetic contributors to conditions such as type 2 diabetes, Crohn’s disease, elevated blood cholesterol, rheumatoid arthritis, multiple sclerosis, and prostate cancer. These studies and many others used a suite of analytical methods developed at MGH and its partner institutions.

“The original HapMap provided the backbone for genome-wide association studies that have uncovered previously unsuspected genetic components of many diseases, leading to new areas of research,” says Mark Daly, PhD, of the Massachusetts General Hospital (MGH) Center for Human Genetic Research, co-senior author of the report in the Oct. 18 issue of Nature. “The second phase has tripled the amount of genetic variation assessed and describes up to 95 percent of common single-letter variations in the human genetic code.”

While the Human Genome Project confirmed that the more than 3 billion “letters” of DNA in each human were 99.9 percent identical, analyzing the small fraction that differ – including about 10 million distinct, single-letter variations, also called SNPs – remained a daunting task. In 2001 Daly and colleagues showed that adjacent DNA variations are inherited together in segments called haplotypes, with the boundaries between adjacent segments defined by locations of enhanced recombination – the shuffling of DNA segments between the chromosomes inherited from each parent. Based in part on those findings, the HapMap project was started to create a map of SNPs and haplotypes across the genomes of 270 individuals from Nigeria, China, Japan and the U.S. While the first phase identified and cataloged about 1.3 million SNPs, the second phase has brought the total to more than 3.1 million SNPs catalogued in the same population.

“The increased density of identified SNPs in the second phase has allowed us to much more specifically understand the nature of these recombination ‘hotspots.’ ” says Daly. “Another interesting finding is that we can identify, among apparently unrelated individuals, chromosome segments that clearly have been inherited without change from common ancestors who lived hundreds to a thousand years ago. The ability to detect these more recently inherited segments of DNA may hold the key to rare disease-associated variations that have been hard to detect with current tools.” Daly is an assistant professor of Medicine at Harvard Medical School and a senior associate member of the Broad Institute of Harvard and Massachusetts Institute of Technology.

The information in the HapMap is freely accessible to researchers around the world. The data assembled in the second phase was added to the public database as it became available and already has been used in a number of research studies. As the project continues, it will use new sequencing techniques to further analyze genetic variations in the same study group and in a larger population.

“While the completion of Phase 2 of the HapMap Project makes possible comprehensive studies of common SNPs in the sampled populations, there remains much work to be done,” says David Altshuler, of the MGH Center for Human Genetic Research. “Current efforts aim to catalogue genetic variation in more diverse samples from around the world, to define larger chromosomal alterations that might be missed by SNPs-based approaches and to find rare genetic variations that might have potent effects on individual patients. Only by combining all these approaches can we hope to have a complete understanding of the genetic root causes of common human diseases.” Altshuler is also an associate professor of Genetics and Medicine at HMS, director of the Program in Medical and Population Genetics at the Broad Institute, and co-chair for Analysis of the International HapMap Project.

Sue McGreevey | EurekAlert!
Further information:
http://www.hapmap.org

Further reports about: Broad Institute DNA Daly Genetic HapMap MGH SNP genetic variation segments

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>