Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Second phase of HapMap project is completed

18.10.2007
Database of human genetic diversity allows identification of disease-associated genes

Investigators from six countries have completed the second phase of the International HapMap Project, an effort to identify and catalog genetic similarities and differences among populations around the world. Information provided in the first phase of the HapMap, completed in 2005, has led to the development of techniques facilitating the search for genes associated with common diseases – such as schizophrenia and heart disease – and the identification of more than 50 such disease-associated genes.

In the past year, using data and methods based on the HapMap, MGH researchers have published new genetic contributors to conditions such as type 2 diabetes, Crohn’s disease, elevated blood cholesterol, rheumatoid arthritis, multiple sclerosis, and prostate cancer. These studies and many others used a suite of analytical methods developed at MGH and its partner institutions.

“The original HapMap provided the backbone for genome-wide association studies that have uncovered previously unsuspected genetic components of many diseases, leading to new areas of research,” says Mark Daly, PhD, of the Massachusetts General Hospital (MGH) Center for Human Genetic Research, co-senior author of the report in the Oct. 18 issue of Nature. “The second phase has tripled the amount of genetic variation assessed and describes up to 95 percent of common single-letter variations in the human genetic code.”

While the Human Genome Project confirmed that the more than 3 billion “letters” of DNA in each human were 99.9 percent identical, analyzing the small fraction that differ – including about 10 million distinct, single-letter variations, also called SNPs – remained a daunting task. In 2001 Daly and colleagues showed that adjacent DNA variations are inherited together in segments called haplotypes, with the boundaries between adjacent segments defined by locations of enhanced recombination – the shuffling of DNA segments between the chromosomes inherited from each parent. Based in part on those findings, the HapMap project was started to create a map of SNPs and haplotypes across the genomes of 270 individuals from Nigeria, China, Japan and the U.S. While the first phase identified and cataloged about 1.3 million SNPs, the second phase has brought the total to more than 3.1 million SNPs catalogued in the same population.

“The increased density of identified SNPs in the second phase has allowed us to much more specifically understand the nature of these recombination ‘hotspots.’ ” says Daly. “Another interesting finding is that we can identify, among apparently unrelated individuals, chromosome segments that clearly have been inherited without change from common ancestors who lived hundreds to a thousand years ago. The ability to detect these more recently inherited segments of DNA may hold the key to rare disease-associated variations that have been hard to detect with current tools.” Daly is an assistant professor of Medicine at Harvard Medical School and a senior associate member of the Broad Institute of Harvard and Massachusetts Institute of Technology.

The information in the HapMap is freely accessible to researchers around the world. The data assembled in the second phase was added to the public database as it became available and already has been used in a number of research studies. As the project continues, it will use new sequencing techniques to further analyze genetic variations in the same study group and in a larger population.

“While the completion of Phase 2 of the HapMap Project makes possible comprehensive studies of common SNPs in the sampled populations, there remains much work to be done,” says David Altshuler, of the MGH Center for Human Genetic Research. “Current efforts aim to catalogue genetic variation in more diverse samples from around the world, to define larger chromosomal alterations that might be missed by SNPs-based approaches and to find rare genetic variations that might have potent effects on individual patients. Only by combining all these approaches can we hope to have a complete understanding of the genetic root causes of common human diseases.” Altshuler is also an associate professor of Genetics and Medicine at HMS, director of the Program in Medical and Population Genetics at the Broad Institute, and co-chair for Analysis of the International HapMap Project.

Sue McGreevey | EurekAlert!
Further information:
http://www.hapmap.org

Further reports about: Broad Institute DNA Daly Genetic HapMap MGH SNP genetic variation segments

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>