Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene defects could be new cause of male infertility

18.10.2007
Scientists at the University of North Carolina at Chapel Hill have identified a gene crucial to the final step of the formation of a functional sperm cell.

That final step – called spermiogenesis – entails the compaction of DNA into a tight ball within the head of the sperm so it can successfully penetrate an egg.

Mice engineered to lack the crucial gene, Jhdm2a, that triggers this process did not produce many mature sperm, and those they did produce had abnormally shaped heads and immotile tails.

“Defects in this gene could be the cause for some cases of male infertility,” said study senior author Yi Zhang, Ph.D., Howard Hughes Medical Institute investigator and professor of biochemistry and biophysics in the UNC School of Medicine. Zhang is also a member of the UNC Lineberger Comprehensive Cancer Center.

... more about:
»DNA »Histone »Jhdm2a »cause »defect »infertility »sperm

“Because this gene has a very specific effect on the development of functional sperm, it holds great potential as a target for new infertility treatments that are unlikely to disrupt other functions within the body.”

The study, published on-line in the journal Nature Wednesday (Oct. 17, 2007), provides evidence that Jhdm2a directly controls expression of several genes required for DNA packaging in sperm cells. The research was funded by the Howard Hughes Medical Institute and the National Institutes of Health. For a sperm cell to mature fully, multiple molecular events have to occur, such as assembly of a sperm tail and packaging of sperm DNA.

In the sperm cell, yarn-like strands of DNA wrap around spools of protein called histones that package the DNA so it fits into the nucleus. Chemical tags such as methyl groups affixed to the histones govern how tightly the DNA can be packaged, affecting the accessibility for the gene to be switched on or off.

Previous studies have shown that when a gene is turned off, one of these histones, H3K9, carries a methyl tag. In a study published in Cell last year, Zhang’s laboratory demonstrated that the enzyme Jhdm2a removes this methyl tag, allowing the gene to become switched on, or expressed.

“Although a number of histone demethylases have been identified, very little is known regarding their biological functions, particularly in the context of whole animals,” said Yuki Okada, Ph.D., a postdoctoral fellow in Zhang’s laboratory and lead author on the study.

The unique expression pattern of Jhdm2a suggests that this demethylase may play an important role in the late stages of sperm cell development. In this study, mice genetically engineered to lack this gene had smaller testes, a significantly lower sperm count, and were infertile.

In addition, the few sperm that were produced by these mutant mice displayed significant morphological defects, including abnormally shaped heads and immotile tails.

To assess the packaging state of the sperm DNA, the researchers used electron microscopy and a fluorescent dye called acridine orange, which fluoresces differently depending on the packaging state of a sperm. Both techniques revealed a defect in sperm DNA packaging in the mutant mice, suggesting that incomplete DNA packaging was the cause of infertility.

“There are several mouse models that exhibit the male infertility seen in human syndromes such as azoospermia (absence of sperm) or globozoospermia (sperm with round heads),” said Zhang, “However, most of the genes required for normal spermatogenesis in mice are intact in human patients, raising the possibility that we might consider the jhdm2a gene as a culprit in these human male infertility syndromes.”

Zhang and his colleagues are now looking for mutations in this gene in infertility patients, and are also interested in identifying the partners or cofactors in the cell that help this gene do its job.

Les Lang | EurekAlert!
Further information:
http://www.med.unc.edu

Further reports about: DNA Histone Jhdm2a cause defect infertility sperm

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>