Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model predicts more virulent microbes

18.10.2007
Microbes and humans interact in myriad ways, sharing a long history. Many of the most successful microbes are those that inhabit but do not kill their host.

Cheaters lose. Tuberculosis settles into the lungs. Helicobacter pylori, the microbe causing ulcers, burrows into the stomach where it thrives on acids. And Salmonella typhi takes up residence in the gallbladder. All of these organisms can persist in our bodies for decades. What explains their success"

A new mathematical model, devised by a microbiologist renowned for his study of H. pylori and a mathematician, provides the framework for understanding how persistent microbes obtain equilibrium with their human hosts. The multi-scale model, published in the October 18, 2007, issue of the journal Nature, is based on the idea that certain microbes and humans evolved together and along the way established complex strategies that enabled them to co-exist. These strategies are contingent in part on human population size.

The model helps explain the rules that govern the transmission of microbes and how they have operated in human history, says Martin J. Blaser, M.D., the Frederick King Professor and Chair of the Department of Medicine, and Professor of Microbiology at New York University School of Medicine. He and Denise Kirschner of the University of Michigan Medical School, Ann Arbor, are authors of the study. The model uses game theory, developed by Nobel prize-winning mathematician John Nash, the subject of the book and movie A Beautiful Mind, to describe a particular type of equilibrium.

... more about:
»Blaser »Model »Organisms »evolved »microbe »pylori »virulent

The model can be used to better understand microbial responses to a changing human world, says Dr. Blaser. Based on their formulations, our biological future will probably be filled with some “pretty bad epidemics,” says Dr. Blaser. “Our model predicts that as effective population size increases and as immunodeficiency increases due to the spread of HIV infection, and an aging population, there will be more virulent organisms. This is bad news for us.”

Through the course of human evolution, Drs. Blaser and Kirschner propose that three classes of persistent microbes have evolved, each employing a different biological strategy to avoid being eliminated quickly by their human hosts. TB, H. pylori, and Salmonella are an example of each class. Any microbe that was “cheating” the system, in other words, tried to expand its territory in the body, wouldn’t survive because it would likely kill its host.

According to their theory, small populations select for certain kinds of microbial agents. More than 50,000 years ago, when humans lived as hunter-gatherers in small, isolated groups, the majority of microbes were transmitted within families or were those that would emerge late in life. Microbes that were not lethal were favored because there wasn’t a large reservoir of people to infect. Any microbe that killed off its hosts, wouldn’t have survived itself. H. pylori evolved during this time.

As population size increased and humans became less isolated, organisms that had perfected ways to hide in the body for decades, such as TB and Salmonella typhi, and then suddenly reactivate or get transmitted, evolved. These organisms could afford to induce more disease early in life because they had mechanisms to sustain themselves in human populations.

As even larger societies developed, more virulent organisms, such as measles, emerged because the population could permit the virus to spread. Our most recent epidemics, including influenza in the early 20th century and AIDS today, involve organisms that can kill millions because these highly virulent organisms have a huge pool of people to infect, and still be transmitted.

“We did not make the laws of nature,” says Dr. Blaser. “Even though we may not like them, we need to understand them to better control infectious diseases.”

Pamela McDonnell | EurekAlert!
Further information:
http://www.nyumc.org

Further reports about: Blaser Model Organisms evolved microbe pylori virulent

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>