Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCSB researchers discover the dawn of animal vision

By peering deep into evolutionary history, scientists at the University of California, Santa Barbara have discovered the origins of photosensitivity in animals.

The findings are published in this week’s issue of the scientific journal PLoS ONE. The scientists studied the aquatic animal Hydra, a member of Cnidaria, which are animals that have existed for hundreds of millions of years. The authors are the first scientists to look at light-receptive genes in cnidarians, an ancient class of animals that includes corals, jellyfish, and sea anemones.

“Not only are we the first to analyze these vision genes (opsins) in these early animals, but because we don’t find them in earlier evolving animals like sponges, we can put a date on the evolution of light sensitivity in animals,” said David C. Plachetzki, first author and a graduate student at UC Santa Barbara. The research was conducted with a National Science Foundation dissertation improvement grant.

“We now have a time frame for the evolution of animal light sensitivity. We know its precursors existed roughly 600 million years ago,” said Plachetzki.

... more about:
»Evolution »Hydra »scientists

Senior author Todd H. Oakley, assistant professor of biology at UCSB, explained that there are only a handful of cases where scientists have documented the very specific mutational events that have given rise to new features during evolution.

Oakley said that anti-evolutionists often argue that mutations, which are essential for evolution, can only eliminate traits and cannot produce new features. He goes on to say, “Our paper shows that such claims are simply wrong. We show very clearly that specific mutational changes in a particular duplicated gene (opsin) allowed the new genes to interact with different proteins in new ways. Today, these different interactions underlie the genetic machinery of vision, which is different in various animal groups.”

Hydras are predators, and the authors speculate that they use light sensitivity in order to find prey. Hydra use opsin proteins all over their bodies, but they are concentrated in the mouth area, near the tip of the animal. Hydras have no eyes or light-receptive organs, but they have the genetic pathways to be able to sense light.

Gail Gallessich | EurekAlert!
Further information:

Further reports about: Evolution Hydra scientists

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>