Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NMR researchers unlock hydrogen’s secrets to spot polymorphism in pharmaceuticals

17.10.2007
Researchers at the University of Warwick and Astra Zeneca have found a new way to use solid-state NMR equipment to crack the secrets of hydrogen atoms and thus spot unwanted polymorphs in pharmaceuticals.

Pharmaceuticals companies are constantly battling the problem of polymorphism in which an active drug can actually exist in more than one form or crystal structure which can cause the drug to act in very different ways. Now researchers at the University of Warwick and Astra Zeneca have devised a new method of using solid-state NMR (nuclear magnetic resonance) equipment to spot unwanted polymorphs that should be adopted as a routine tool by pharmaceutical companies.

NMR equipment is already used to detect polymorphism in pharmaceuticals. However the standard technique looks at the carbon 13C nuclei in the drugs by a method called cross-polarisation magic-angle spinning (CP MAS). This is a very insensitive technique as only 1 in 100 carbon nuclei are the 13C isotope. This means that 99 out of 100 carbon nuclei are a NMR-invisible form of carbon. Only one-dimensional spectra are routinely possible from such an experiment.

Researchers have long wished to be able to couple this carbon based solid–state NMR technique with one that looks at hydrogen nuclei. It has been possible to look at hydrogen when the sample is a solution (solution-state NMR) but this is not as easy in solid-state NMR as the extensive network of coupled together 1H nuclei leads to broad lines in the spectrum that are hard to tell apart. This makes it almost useless when you are examining a tablet. Tablets are also particularly difficult to examine as the active drug within the tablet is combined with a mixture of other filler compounds (excipients).

This breakthrough by the Warwick team opens up hydrogen nuclei to useful study by solid-state NMR which will bring immense benefits to the study of polymorphism in drugs and organic molecules in general. This is because hydrogen atoms are central to hydrogen bonding (as opposed to carbon atoms which "observe" from afar). Hydrogen bonding is often the driving force in determining how organic molecules do differ in their methods of "3D packing" forming polymorphs or pseudo-polymorphs (pseudo-polymorphism referring to crystal structures that differ through the inclusion or non inclusion of small molecules, eg with or without water). This new NMR technique can identify which pseudo polymorph of an active pharmaceutical is present in a complete tablet.

The research team led by Dr Steven Brown from the University of Warwick’s Department of Physics have exploited recent developments in NMR hardware and pulse sequence design allowing them to gain high-resolution 1H solid-state NMR spectra by a method called CRAMPS (combined rotation and multiple-pulse spectroscopy). By using this high-resolution two-dimensional 1H CRAMPS solid-state NMR they obtained a spectrum for a tablet formulation in less than 2 hours, which is equivalent to the time required for a good 13C CP MAS one dimensional spectrum.

Dr Steven Brown said: "This Hydrogen 1H solid-state NMR method gives powerful new insight that complements established Carbon 13C based techniques - this new approach should be adopted as a routine tool in pharmaceutical characterisation"

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/nmr_researchers_unlock/

Further reports about: 13C NMR Pharmaceutical Polymorph Polymorphism SPOT nuclei organic molecule solid-state

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>