Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NMR researchers unlock hydrogen’s secrets to spot polymorphism in pharmaceuticals

17.10.2007
Researchers at the University of Warwick and Astra Zeneca have found a new way to use solid-state NMR equipment to crack the secrets of hydrogen atoms and thus spot unwanted polymorphs in pharmaceuticals.

Pharmaceuticals companies are constantly battling the problem of polymorphism in which an active drug can actually exist in more than one form or crystal structure which can cause the drug to act in very different ways. Now researchers at the University of Warwick and Astra Zeneca have devised a new method of using solid-state NMR (nuclear magnetic resonance) equipment to spot unwanted polymorphs that should be adopted as a routine tool by pharmaceutical companies.

NMR equipment is already used to detect polymorphism in pharmaceuticals. However the standard technique looks at the carbon 13C nuclei in the drugs by a method called cross-polarisation magic-angle spinning (CP MAS). This is a very insensitive technique as only 1 in 100 carbon nuclei are the 13C isotope. This means that 99 out of 100 carbon nuclei are a NMR-invisible form of carbon. Only one-dimensional spectra are routinely possible from such an experiment.

Researchers have long wished to be able to couple this carbon based solid–state NMR technique with one that looks at hydrogen nuclei. It has been possible to look at hydrogen when the sample is a solution (solution-state NMR) but this is not as easy in solid-state NMR as the extensive network of coupled together 1H nuclei leads to broad lines in the spectrum that are hard to tell apart. This makes it almost useless when you are examining a tablet. Tablets are also particularly difficult to examine as the active drug within the tablet is combined with a mixture of other filler compounds (excipients).

This breakthrough by the Warwick team opens up hydrogen nuclei to useful study by solid-state NMR which will bring immense benefits to the study of polymorphism in drugs and organic molecules in general. This is because hydrogen atoms are central to hydrogen bonding (as opposed to carbon atoms which "observe" from afar). Hydrogen bonding is often the driving force in determining how organic molecules do differ in their methods of "3D packing" forming polymorphs or pseudo-polymorphs (pseudo-polymorphism referring to crystal structures that differ through the inclusion or non inclusion of small molecules, eg with or without water). This new NMR technique can identify which pseudo polymorph of an active pharmaceutical is present in a complete tablet.

The research team led by Dr Steven Brown from the University of Warwick’s Department of Physics have exploited recent developments in NMR hardware and pulse sequence design allowing them to gain high-resolution 1H solid-state NMR spectra by a method called CRAMPS (combined rotation and multiple-pulse spectroscopy). By using this high-resolution two-dimensional 1H CRAMPS solid-state NMR they obtained a spectrum for a tablet formulation in less than 2 hours, which is equivalent to the time required for a good 13C CP MAS one dimensional spectrum.

Dr Steven Brown said: "This Hydrogen 1H solid-state NMR method gives powerful new insight that complements established Carbon 13C based techniques - this new approach should be adopted as a routine tool in pharmaceutical characterisation"

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/nmr_researchers_unlock/

Further reports about: 13C NMR Pharmaceutical Polymorph Polymorphism SPOT nuclei organic molecule solid-state

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>