Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists spy enzyme that makes us unique

17.10.2007
Have you ever wondered why you inherited your mother’s smile but not your father’s height? Researchers at the Universities of Leeds and Dundee are one step closer to unravelling how nature combines both maternal and paternal DNA to create genetically unique offspring.

In a world first, Leeds researchers Professor Simon Phillips, Dr Stephen Carr and Dr Jonathan Hadden, together with Professor David Lilley at Dundee, have mapped the 3 dimensional structure of an enzyme responsible for splitting DNA strands – a process at the heart of human individuality.

The discovery of the T7 endonuclease 1 enzyme’s structure was made by using x-ray crystallography techniques. The enzyme is derived from a bacteriophage – a naturally occurring virus-like agent that attacks bacteria – but the molecular processes are expected to be similar in other organisms, including humans.

“Whilst the enzyme was known to play a central role, its physical structure, which is crucial to understanding the splitting process, has never been seen before. We’ve now got a 3D picture of it at work, and seen it at the point at which it is about to cut through the DNA strands. This is a major breakthrough in investigating the fundamental mechanisms at work behind the formation of a person’s DNA and how viruses replicate their DNA in the body,” says Professor Phillips.

... more about:
»DNA »enzyme »strands »unique

In humans, this process starts at conception when maternal and paternal DNA strands join together at random points in their sequence(1). Enzymes such as T7 endonuclease 1 are then responsible for severing the strands at this junction, thus creating a third, unique DNA sequence for the offspring.

However, Professor Phillips says it will be some time before this process can be observed in humans. “It’s too important a discovery to rush. Our next step is to examine the process in a more complex system than bacteriophage, such as yeast,” he says.

The work is the result of a long collaboration between the research groups at Leeds and Dundee and has been funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council (BBSRC) Cancer Research UK.

Clare Elsley | alfa
Further information:
http://www.leeds.ac.uk

Further reports about: DNA enzyme strands unique

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>