Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Symposium marks 30th anniversary of discovery of third domain of life

17.10.2007
Thirty years ago this month, researchers at the University of Illinois published a discovery that challenged basic assumptions about the broadest classifications of life. Their discovery – which was based on an analysis of ribosomal RNA, an ancient molecule essential to the replication of all cells – opened up a new field of study, and established a first draft of the evolutionary “tree of life.”

To mark the anniversary of this discovery, the university is holding a symposium Nov. 3-4 (Saturday-Sunday), with a public lecture at the Spurlock Museum on the evening of Nov. 2. “Hidden Before Our Eyes: 30 Years of Molecular Phylogeny, Archaea and Evolution” will detail the exacting work that led to the discovery of a “third domain” of life, the microbes now known as the archaea. The event will revisit the program of research that led to the discovery, explore its impact on the study of evolution, and describe the way in which genetic analysis continues to revolutionize biology, in particular microbial ecology.

In 1977, microbiology professor Carl Woese led the team that identified the archaea as a unique domain of life, distinct from bacteria and other organisms. Prior to this finding, generations of evolutionary biologists and microbiologists believed that the microbes now called archaea were simply another taxon among bacteria. They had divided all living organisms into two broad superkingdoms, or domains: the “prokaryotes,” which included both the true bacteria and archaea; and “eukaryotes,” including all animals, plants, fungi and protists (a diverse group that includes protozoans, algae, slime molds and other organisms). Some prominent biologists still hold to this classification scheme.

Woese had set out to map the evolutionary history of life by comparing RNA sequences of a molecular sequence common to all living cells: the ribosome, which manufactures a cell’s proteins.

Each group of organisms contains sets of genetic sequences in their ribosomal RNA that are distinctive. These genetic “signatures” differentiate the groups. Woese’s analysis of a variety of organisms’ genetic signatures told a story that was different from the conventional wisdom, however.

This surprising discovery came when the researchers looked at the ribosomal RNA (rRNA) of a group of methane-generating microbes that had been classified as bacteria. Illinois microbiology professor Ralph Wolfe, an expert on these “methanogens,” was a member of Woese’s team, along with postdoctoral researcher George Fox, graduate student William Balch and lab technician Linda Magrum.

“Of all the numerous suggestions we had gotten for organisms to study, the one I solicited from my colleague, Ralph Wolfe, turned out to be the most important,” Woese wrote in an account of the discovery. “Ralph was in the process of working out the biochemistry of methanogenesis, which made it natural for him to suggest we characterize the methanogens.”

Wolfe was one of only a handful of researchers studying methanogens in the mid-1970s. These organisms were notoriously difficult to grow in culture because they could survive only in an oxygen-free atmosphere that was rich in hydrogen and carbon dioxide. Balch, a graduate student in Wolfe’s lab, had found a way to create a sealed and pressurized atmosphere inside a test tube that would support these organisms, however. Using this technique, a methanogen now called M. bryantii, was grown in sufficient quantities for study.

Woese had already found a collection of rRNA sequences that were specific to bacteria, and another set of sequences unique to plants, animals and other eukarya. When he sequenced the ribosomal RNA of Wolfe’s methanogen, however, he found that it was strikingly different from that of eukarya and bacteria. Although it shared some universal sequences with the other organisms, it also carried its own unique set of sequences that did not fit with either group. It was “neither fish nor fowl,” Woese said.

The scientists were astonished, and quickly turned their attention to other methanogens. The genetic pattern held: The rRNA signatures of the methanogens were distinct from those of eukaryotes and bacteria. Woese concluded that the methanogens were not bacteria.

Wolfe recalled, “When Carl said they weren’t bacteria, I said: ‘Of course they are bacteria! They look like bacteria! They have this prokaryotic morphology and cell structure.’ ”

But when Wolfe saw how the sequence data fell into discrete groups, with all the methanogens in a category of their own, “I became a believer,” he said.

Their findings were published in the Proceedings of the National Academy of Sciences in October 1977. The paper’s three-sentence abstract stated simply that “the methanogens constitute a distinct phylogenetic group… only distantly related to bacteria.”

A second PNAS paper, published the following month by Woese and Fox, outlined the evidence that there were three – rather than two – superkingdoms, or domains, of life.

“There was general amazement and feeling that something great had been discovered among the physical scientists,” Woese said.

Many microbiologists and other life scientists were unwilling to accept the new classification scheme, however. They continued to see the archaea as a highly differentiated offshoot of the bacterial line.

In 2003, Woese won the $500,000 Crafoord Prize in Biosciences for his discovery of this “third domain of life.” The prize, given by the Royal Swedish Academy of Sciences, marks accomplishments in scientific fields not covered by the Nobel Prizes in sciences, which the academy also selects.

Controversy over the work continued, however. Some scientists described the 1977 announcement of a third domain as an achievement comparable to that of the discovery of a new continent. Others discounted the idea as a “fantastic” hypothesis based on a limited and unreliable pool of data. To this day, many textbooks, dictionaries and other science reference materials include the “classical” and the Woese classification schemes.

Now 79, Woese continues his work as a member of the “Biocomplexity” theme at the Institute for Genomic Biology. He works with collaborators in physics, chemistry, geology and microbiology in a continuing exploration of the genomic complexity of biological systems. He worries about what he sees as a general lack of interest in evolution among microbiologists and other life scientists. And he hopes that a new generation of scientists will make full use of the genomic tools that he believes could revolutionize the study of the origins and evolution of life.

Wolfe, 86, an emeritus professor of microbiology, continues his interest in the physiology and biochemistry of the methanoarchaea.

More information about “Hidden Before Our Eyes,” is available at the symposium Web site: http://archaea.igb.uiuc.edu.

Diana Yates | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/1016thirddomain.html
http://archaea.igb.uiuc.edu

Further reports about: Archaea Discovery Domain Organisms RNA Woese methanogen microbiology ribosomal sequence

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>