Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of influenza B virus protein gives clues to next pandemic

16.10.2007
Determining the structure of a protein called hemagglutinin on the surface of influenza B is giving researchers at Baylor College of Medicine and Rice University in Houston clues as to what kinds of mutations could spark the next flu pandemic.

In a report that goes online today in the Proceedings of the National Academy of Sciences (PNAS), Drs. Qinghua Wang, assistant professor of biochemistry and molecular biology at BCM, and Jianpeng Ma, associate professor in the same department and their colleagues describe the actual structure of influenza B virus hemagglutinin and compare it to a similar protein on influenza A virus.

That comparison may be key to understanding the changes that will have to occur before avian flu (which is a form of influenza A virus) mutates to a form that can easily infect humans, said Ma, who holds a joint appointment at Rice. He and Wang have identified a particular residue or portion of the protein that may play a role in how different types of hemagglutinin bind to human cells.

“What would it take for the bird flu to mutate and start killing people" That’s the next part of our work,” said Ma. Understanding that change may give scientists a handle on how to stymie it.

... more about:
»Influenza »Protein »clue »hemagglutinin »infect »pandemic

There are two main forms of influenza virus – A and B. Influenza B virus infects only people while influenza A infects people and birds. In the past, influenza A has been the source of major worldwide epidemics (called pandemics) of flu that have swept the globe, killing millions of people. The most famous of these was the Pandemic of 1918-1919, which is believed to have killed between 20 and 40 million people worldwide. It killed more people than World War I, which directly preceded it.

The Asian flu pandemic of 1957-1958 is believed to have killed as many as 1.5 million people worldwide, and the so-called Hong Kong flu pandemic of 1968-1969 is credited with as many as 1 million deaths. Each scourge was accompanied by a major change in the proteins on the surface of the virus.

Hemagglutinin sits on the membrane or surface of the virus. When it finds a receptor in a cell, it clicks in – just as a key fits into a lock and enters to infect the cell. The hemagglutinin on influenza B only fits into a receptor on human cells. However, influenza A virus hemagglutinin fits into receptors on human and bird cells. Understanding the differences in the two “keys” may provide a clue as to how the avian flu virus, which infects only bird cells easily now, must change to infect humans easily. Understanding those changes could provide researchers with information about how likely a pandemic of bird flu might be, said Ma.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu
http://www.pnas.org

Further reports about: Influenza Protein clue hemagglutinin infect pandemic

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Error-free into the Quantum Computer Age

18.12.2017 | Physics and Astronomy

Disarray in the brain

18.12.2017 | Studies and Analyses

2 million euros in funding for new MR-compatible electrophysiological brain implants

18.12.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>